Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diabetologia ; 56(6): 1327-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23462796

RESUMO

AIMS/HYPOTHESIS: It is not clear how small tyrosine kinase inhibitors, such as imatinib mesilate, protect against diabetes and beta cell death. The aim of this study was to determine whether imatinib, as compared with the non-cAbl-inhibitor sunitinib, affects pro-survival signalling events in the phosphatidylinositol 3-kinase (PI3K) pathway. METHODS: Human EndoC-ßH1 cells, murine beta TC-6 cells and human pancreatic islets were used for immunoblot analysis of insulin receptor substrate (IRS)-1, Akt and extracellular signal-regulated kinase (ERK) phosphorylation. Phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] plasma membrane concentrations were assessed in EndoC-ßH1 and MIN6 cells using evanescent wave microscopy. Src homology 2-containing inositol 5'-phosphatase 2 (SHIP2) tyrosine phosphorylation and phosphatase and tensin homologue deleted on chromosome 10 (PTEN) serine phosphorylation, as well as c-Abl co-localisation with SHIP2, were studied in HEK293 and EndoC-ßH1 cells by immunoprecipitation and immunoblot analysis. Gene expression was assessed using RT-PCR. Cell viability was measured using vital staining. RESULTS: Imatinib stimulated ERK(thr202/tyr204) phosphorylation in a c-Abl-dependent manner. Imatinib, but not sunitinib, also stimulated IRS-1(tyr612), Akt(ser473) and Akt(thr308) phosphorylation. This effect was paralleled by oscillatory bursts in plasma membrane PI(3,4,5)P3 levels. Wortmannin induced a decrease in PI(3,4,5)P3 levels, which was slower in imatinib-treated cells than in control cells, indicating an effect on PI(3,4,5)P3-degrading enzymes. In line with this, imatinib decreased the phosphorylation of SHIP2 but not of PTEN. c-Abl co-immunoprecipitated with SHIP2 and its binding to SHIP2 was largely reduced by imatinib but not by sunitinib. Imatinib increased total ß-catenin levels and cell viability, whereas sunitinib exerted negative effects on cell viability. CONCLUSIONS/INTERPRETATION: Imatinib inhibition of c-Abl in beta cells decreases SHIP2 activity, which results in enhanced signalling downstream of PI3 kinase.


Assuntos
Benzamidas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Mesilato de Imatinib , Indóis/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Fosforilação , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Pirróis/farmacologia , Sunitinibe , Fatores de Tempo
2.
Mol Cell Endocrinol ; 511: 110835, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32371087

RESUMO

It is not known how ghrelin affects insulin secretion in human islets from patients with type 2 diabetes (T2D) or whether islet ghrelin expression or circulating ghrelin levels are altered in T2D. Here we sought out to identify the effect of ghrelin on insulin secretion in human islets and the impact of T2D on circulating ghrelin levels and on islet ghrelin cells. The effect of ghrelin on insulin secretion was assessed in human T2D and non-T2D islets. Ghrelin expression was assessed with RNA-sequencing (n = 191) and immunohistochemistry (n = 21). Plasma ghrelin was measured with ELISA in 40 T2D and 40 non-T2D subjects. Ghrelin exerted a glucose-dependent insulin-suppressing effect in islets from both T2D and non-T2D donors. Compared with non-T2D donors, T2D donors had reduced ghrelin mRNA expression and 75% less islet ghrelin cells, and ghrelin mRNA expression correlated negatively with HbA1c. T2D subjects had 25% lower fasting plasma ghrelin levels than matched controls. Thus, ghrelin has direct insulin-suppressing effects in human islets and T2D patients have lower fasting ghrelin levels, likely as a result of reduced number of islet ghrelin cells. These findings support inhibition of ghrelin signaling as a potential therapeutic avenue for stimulation of insulin secretion in T2D patients.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Grelina/sangue , Grelina/farmacologia , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Contagem de Células , Jejum/sangue , Glucose/metabolismo , Humanos , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Fenótipo , RNA-Seq , Doadores de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA