Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 784, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938570

RESUMO

The European Plate Observing System (EPOS) is a long-term initiative aimed at integrating research infrastructures for solid Earth science in Europe. EPOS provides a sustainable, multidisciplinary user-oriented platform - the EPOS Data Portal - that facilitates data integration, access, use, and re-use, while adhering to the FAIR principles. The paper describes the key governance, community building, and technical aspects for achieving multidisciplinary data integration through the portal. It also outlines the key portal features for aggregating approximately 250 data sources from more than ten different scientific communities. The main architectural concepts underpinning the portal, namely the rich-metadata, the service-driven data provision, and the usage of semantics, are outlined. The paper discusses the challenges encountered during the creation of the portal, describes the community engagement process, and highlights the benefits to the scientific community and society. Future work includes expanding portal functionalities to include data analysis, processing, and visualization and releasing the portal as an open-source software package.

2.
Sci Rep ; 8(1): 10547, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002471

RESUMO

The island of Bali in Indonesia is home to two active stratovolcanoes, Agung and Batur, but relatively little is known of their underlying magma plumbing systems. Here we define magma storage depths and isotopic evolution of the 1963 and 1974 eruptions using mineral-melt equilibrium thermobarometry and oxygen and helium isotopes in mineral separates. Olivine crystallised from a primitive magma and has average δ18O values of 4.8‰. Clinopyroxene records magma storage at the crust-mantle boundary, and displays mantle-like isotope values for Helium (8.62 RA) and δ18O (5.0-5.8‰). Plagioclase reveals crystallisation in upper crustal storage reservoirs and shows δ18O values of 5.5-6.4‰. Our new thermobarometry and isotope data thus corroborate earlier seismic and InSAR studies that inferred upper crustal magma storage in the region. This type of multi-level plumbing architecture could drive replenishing magma to rapid volatile saturation, thus increasing the likelihood of explosive eruptions and the consequent hazard potential for the population of Bali.

3.
Sci Rep ; 7: 40624, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120860

RESUMO

Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

4.
Sci Rep ; 6: 30774, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27488228

RESUMO

Carbon dioxide released by arc volcanoes is widely considered to originate from the mantle and from subducted sediments. Fluids released from upper arc carbonates, however, have recently been proposed to help modulate arc CO2 fluxes. Here we use boron as a tracer, which substitutes for carbon in limestone, to further investigate crustal carbonate degassing in volcanic arcs. We performed laboratory experiments replicating limestone assimilation into magma at crustal pressure-temperature conditions and analysed boron isotope ratios in the resulting experimental glasses. Limestone dissolution and assimilation generates CaO-enriched glass near the reaction site and a CO2-dominated vapour phase. The CaO-rich glasses have extremely low δ(11)B values down to -41.5‰, reflecting preferential partitioning of (10)B into the assimilating melt. Loss of (11)B from the reaction site occurs via the CO2 vapour phase generated during carbonate dissolution, which transports (11)B away from the reaction site as a boron-rich fluid phase. Our results demonstrate the efficacy of boron isotope fractionation during crustal carbonate assimilation and suggest that low δ(11)B melt values in arc magmas could flag shallow-level additions to the subduction cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA