RESUMO
Cerebral malaria (CM), a potentially fatal encephalopathy caused primarily by infection with Plasmodium falciparum, results in long-term adverse neuro-psychiatric sequelae. Neural cell injury contributes to the neurological deficits observed in CM. Abnormal regulation of tau, an axonal protein pathologically associated with the formation of neurofibrillary lesions in neurodegenerative diseases, has been linked to inflammation and cerebral microvascular compromise and has been reported in human and experimental CM (ECM). Immunotherapy with a monoclonal antibody to pathological tau (PHF-1 mAB) in experimental models of neurodegenerative diseases has been reported to mitigate cognitive decline. We investigated whether immunotherapy with PHF-1 mAB prevented cerebral endotheliopathy, neural cell injury, and neuroinflammation during ECM. Using C57BL/6 mice infected with either Plasmodium berghei ANKA (PbA), which causes ECM, Plasmodium berghei NK65 (PbN), which causes severe malaria, but not ECM, or uninfected mice (Un), we demonstrated that when compared to PbN infection or uninfected mice, PbA infection resulted in significant memory impairment at 6 days post-infection, in association with abnormal tau phosphorylation at Ser202 /Thr205 (pSer202 /Thr205 ) and Ser396-404 (pSer396-404 ) in mouse brains. ECM also resulted in significantly higher expression of inflammatory markers, in microvascular congestion, and glial cell activation. Treatment with PHF-1 mAB prevented PbA-induced cognitive impairment and was associated with significantly less vascular congestion, neuroinflammation, and neural cell activation in mice with ECM. These findings suggest that abnormal regulation of tau protein contributes to cerebral vasculopathy and is critical in the pathogenesis of neural cell injury during CM. Tau-targeted therapies may ameliorate the neural cell damage and subsequent neurocognitive impairment that occur during disease.
Assuntos
Malária Cerebral , Doenças Neurodegenerativas , Animais , Camundongos , Humanos , Malária Cerebral/terapia , Malária Cerebral/complicações , Proteínas tau , Doenças Neuroinflamatórias , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Cognição , Imunoterapia , Doenças Neurodegenerativas/patologia , Encéfalo/patologiaRESUMO
BACKGROUND: The evidence base for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is nascent. We sought to characterize SARS-CoV-2 transmission within US households and estimate the household secondary infection rate (SIR) to inform strategies to reduce transmission. METHODS: We recruited patients with laboratory-confirmed SARS-CoV-2 infection and their household contacts in Utah and Wisconsin during 22 March 2020-25 April 2020. We interviewed patients and all household contacts to obtain demographics and medical histories. At the initial household visit, 14 days later, and when a household contact became newly symptomatic, we collected respiratory swabs from patients and household contacts for testing by SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) and sera for SARS-CoV-2 antibodies testing by enzyme-linked immunosorbent assay (ELISA). We estimated SIR and odds ratios (ORs) to assess risk factors for secondary infection, defined by a positive rRT-PCR or ELISA test. RESULTS: Thirty-two (55%) of 58 households secondary infection among household contacts. The SIR was 29% (nâ =â 55/188; 95% confidence interval [CI], 23%-36%) overall, 42% among children (aged <18 years) of the COVID-19 patient and 33% among spouses/partners. Household contacts to COVID-19 patients with immunocompromised conditions and household contacts who themselves had diabetes mellitus had increased odds of infection with ORs 15.9 (95% CI, 2.4-106.9) and 7.1 (95% CI: 1.2-42.5), respectively. CONCLUSIONS: We found substantial evidence of secondary infections among household contacts. People with COVID-19, particularly those with immunocompromising conditions or those with household contacts with diabetes, should take care to promptly self-isolate to prevent household transmission.
Assuntos
COVID-19 , SARS-CoV-2 , Criança , Busca de Comunicante , Características da Família , Humanos , Estados Unidos/epidemiologia , WisconsinRESUMO
Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria.
Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Transtornos Cognitivos/metabolismo , Endotelina-1/metabolismo , Malária Cerebral/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Plasmodium berghei/metabolismo , TempoRESUMO
Plasmodium berghei ANKA infection of C57BL/6 mice is a widely used model of experimental cerebral malaria (ECM). By contrast, the nonneurotropic P. berghei NK65 (PbN) causes severe malarial disease in C57BL/6 mice but does not cause ECM. Previous studies suggest that endothelin-1 (ET-1) contributes to the pathogenesis of ECM. In this study, we characterize the role of ET-1 on ECM vascular dysfunction. Mice infected with 106 PbN-parasitized red blood cells were treated with either ET-1 or saline from 2 to 8 days postinfection (dpi). Plasmodium berghei ANKA-infected mice served as the positive control. ET-1-treated PbN-infected mice exhibited neurological signs, hypothermia, and behavioral alterations characteristic of ECM, dying 4 to 8 dpi. Parasitemia was not affected by ET-1 treatment. Saline-treated PbN-infected mice did not display ECM, surviving until 12 dpi. ET-1-treated PbN-infected mice displayed leukocyte adhesion to the vascular endothelia and petechial hemorrhages throughout the brain at 6 dpi. Intravital microscopic images demonstrated significant brain arteriolar vessel constriction, decreased functional capillary density, and increased blood-brain barrier permeability. These alterations were not present in either ET-1-treated uninfected or saline-treated PbN-infected mice. In summary, ET-1 treatment of PbN-infected mice induced an ECM-like syndrome, causing brain vasoconstriction, adherence of activated leukocytes in the cerebral microvasculature, and blood-brain barrier leakage, indicating that ET-1 is involved in the genesis of brain microvascular alterations that are the hallmark of ECM.
Assuntos
Endotelina-1/efeitos adversos , Malária Cerebral/patologia , Plasmodium berghei/fisiologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/patologia , Adesão Celular , Modelos Animais de Doenças , Endotelina-1/uso terapêutico , Endotélio Vascular/patologia , Feminino , Leucócitos/patologia , Malária Cerebral/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , ParasitemiaRESUMO
Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6â%. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies.
RESUMO
Despite decades of research, cerebral malaria remains one of the most serious complications of Plasmodium infection and is a significant burden in Sub-Saharan Africa, where, despite effective antiparasitic treatment, survivors develop long-term neurological sequelae. Although much remains to be discovered about the pathogenesis of cerebral malaria, The American Journal of Pathology has been seminal in presenting original research from both human and experimental models. These studies have afforded significant insight into the mechanism of cerebral damage in this devastating disease. The present review highlights information gleaned from these studies, especially in terms of their contributions to the understanding of cerebral malaria.
Assuntos
Malária Cerebral/patologia , Animais , Barreira Hematoencefálica/patologia , Humanos , Inflamação/patologia , Malária Cerebral/diagnóstico por imagem , Malária Cerebral/terapia , Neuroimagem , Radiografia , Cintilografia , Transdução de Sinais , Doenças Vasculares/complicações , Doenças Vasculares/patologiaRESUMO
OBJECTIVES: Widespread global transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), continues. Many questions remain about asymptomatic or atypical infections and transmission dynamics. We used comprehensive contact tracing of the first 2 confirmed patients in Illinois with COVID-19 and serologic SARS-CoV-2 antibody testing to determine whether contacts had evidence of undetected COVID-19. METHODS: Contacts were eligible for serologic follow-up if previously tested for COVID-19 during an initial investigation or had greater-risk exposures. Contacts completed a standardized questionnaire during the initial investigation. We classified exposure risk as high, medium, or low based on interactions with 2 index patients and use of personal protective equipment (PPE). Serologic testing used a SARS-CoV-2 spike enzyme-linked immunosorbent assay on serum specimens collected from participants approximately 6 weeks after initial exposure to either index patient. The 2 index patients provided serum specimens throughout their illness. We collected data on demographic, exposure, and epidemiologic characteristics. RESULTS: Of 347 contacts, 110 were eligible for serologic follow-up; 59 (17% of all contacts) enrolled. Of these, 53 (90%) were health care personnel and 6 (10%) were community contacts. Seventeen (29%) reported high-risk exposures, 15 (25%) medium-risk, and 27 (46%) low-risk. No participant had evidence of SARS-CoV-2 antibodies. The 2 index patients had antibodies detected at dilutions >1:6400 within 4 weeks after symptom onset. CONCLUSIONS: In serologic follow-up of the first 2 known patients in Illinois with COVID-19, we found no secondary transmission among tested contacts. Lack of seroconversion among these contacts adds to our understanding of conditions (ie, use of PPE) under which SARS-CoV-2 infections might not result in transmission and demonstrates that SARS-CoV-2 antibody testing is a useful tool to verify epidemiologic findings.
Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Busca de Comunicante/estatística & dados numéricos , Pessoal de Saúde/estatística & dados numéricos , Exposição Ocupacional/estatística & dados numéricos , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Illinois/epidemiologia , Masculino , Pandemias , Equipamento de Proteção Individual , Medição de Risco , SARS-CoV-2RESUMO
BACKGROUND AND OBJECTIVES: Limited data exist on severe acute respiratory syndrome coronavirus 2 in children. We described infection rates and symptom profiles among pediatric household contacts of individuals with coronavirus disease 2019. METHODS: We enrolled individuals with coronavirus disease 2019 and their household contacts, assessed daily symptoms prospectively for 14 days, and obtained specimens for severe acute respiratory syndrome coronavirus 2 real-time reverse transcription polymerase chain reaction and serology testing. Among pediatric contacts (<18 years), we described transmission, assessed the risk factors for infection, and calculated symptom positive and negative predictive values. We compared secondary infection rates and symptoms between pediatric and adult contacts using generalized estimating equations. RESULTS: Among 58 households, 188 contacts were enrolled (120 adults; 68 children). Secondary infection rates for adults (30%) and children (28%) were similar. Among households with potential for transmission from children, child-to-adult transmission may have occurred in 2 of 10 (20%), and child-to-child transmission may have occurred in 1 of 6 (17%). Pediatric case patients most commonly reported headache (79%), sore throat (68%), and rhinorrhea (68%); symptoms had low positive predictive values, except measured fever (100%; 95% confidence interval [CI]: 44% to 100%). Compared with symptomatic adults, children were less likely to report cough (odds ratio [OR]: 0.15; 95% CI: 0.04 to 0.57), loss of taste (OR: 0.21; 95% CI: 0.06 to 0.74), and loss of smell (OR: 0.29; 95% CI: 0.09 to 0.96) and more likely to report sore throat (OR: 3.4; 95% CI: 1.04 to 11.18). CONCLUSIONS: Children and adults had similar secondary infection rates, but children generally had less frequent and severe symptoms. In two states early in the pandemic, we observed possible transmission from children in approximately one-fifth of households with potential to observe such transmission patterns.
Assuntos
Teste de Ácido Nucleico para COVID-19/tendências , COVID-19/epidemiologia , COVID-19/transmissão , SARS-CoV-2/isolamento & purificação , Adolescente , Adulto , Idoso , COVID-19/diagnóstico , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Utah/epidemiologia , Wisconsin/epidemiologia , Adulto JovemRESUMO
Endothelins are potent regulators of vascular tone, which also have mitogenic, apoptotic, and immunomodulatory properties (Rubanyi and Polokoff, 1994; Kedzierski and Yanagisawa, 2001; Bagnato et al., 2011). Three isoforms of endothelin have been identified to date, with endothelin-1 (ET-1) being the best studied. ET-1 is classically considered a potent vasoconstrictor. However, in addition to the effects of ET-1 on vascular smooth muscle cells, the peptide is increasingly recognized as a pro-inflammatory cytokine (Teder and Noble, 2000; Sessa et al., 1991). ET-1 causes platelet aggregation and plays a role in the increased expression of leukocyte adhesion molecules, the synthesis of inflammatory mediators contributing to vascular dysfunction. High levels of ET-1 are found in alveolar macrophages, leukocytes (Sessa et al., 1991) and fibroblasts (Gu et al., 1991). Clinical and experimental data indicate that ET-1 is involved in the pathogenesis of sepsis (Tschaikowsky et al., 2000; Goto et al., 2012), viral and bacterial pneumonia (Schuetz et al., 2008; Samransamruajkit et al., 2002), Rickettsia conorii infections (Davi et al., 1995), Chagas disease (Petkova et al., 2000, 2001), and severe malaria (Dai et al., 2012; Machado et al., 2006; Wenisch et al., 1996a; Dietmann et al., 2008). In this minireview, we will discuss the role of endothelin in the pathogenesis of infectious processes.