Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 42(6): 1921-1932, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33712885

RESUMO

The brain extracellular matrix (ECM) is involved in crucial processes of neural support, neuronal and synaptic plasticity, extrasynaptic transmission, and neurotransmission. ECM is a tridimensional fibrillary meshwork composed of macromolecules that determine its bioactivity and give it unique characteristics. The characterization of the brain ECM is critical to understand its dynamic in SZ. Thus, a comparative study was developed with 71 patients with schizophrenia (SZ) and 70 healthy controls. Plasma of participants was analysed by label-free liquid chromatography-tandem mass spectrometry, and the results were validated using the classical western blot method. Lastly, immunostaining of post-mortem human brain tissue was performed to analyse the distribution of the brain ECM proteins by confocal microscopy. The analysis identified four proteins: fibronectin, lumican, nidogen-1, and secreted protein acidic and rich in cysteine (SPARC) as components of the brain ECM. Statistical significance was found for fibronectin (P = 0.0166), SPARC (P = 0.0003), lumican (P = 0.0012), and nidogen-1 (P < 0.0001) that were decreased in the SZ group. Fluorescence imaging of prefrontal cortex (PFC) sections revealed a lower expression of ECM proteins in SZ. Our study proposes a pathophysiological dysregulation of proteins of the brain ECM, whose abnormal composition leads to a progressive neuronal impairment and consequently to neurodegenerative processes due to lack of neurophysiological support and dysregulation of neuronal homeostasis. Moreover, the brain ECM and its components are potential pharmacological targets to develop new therapeutic approaches to treat SZ.


Assuntos
Fibronectinas , Esquizofrenia , Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Lumicana/metabolismo , Osteonectina/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
2.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445205

RESUMO

The neurobiology of schizophrenia is multifactorial, comprising the dysregulation of several biochemical pathways and molecules. This research proposes a peripheral biomarker for schizophrenia that involves the second extracellular loop of norepinephrine transporter (NEText), the tropomyosin receptor kinase C (TrkC), and the neurotrophin-3 (NT-3) in T cells. The study of NEText, NT-3, and TrkC was performed in T cells and plasma extracted from peripheral blood of 54 patients with schizophrenia and 54 healthy controls. Levels of NT-3, TrkC, and NET were significantly lower in plasma and T cells of patients compared to healthy controls. Co-immunoprecipitation (co-IPs) showed protein interactions with Co-IP NEText-NT-3 and Co-IP NEText-TrkC. Computational modelling of protein-peptide docking by CABS-dock provided a medium-high accuracy model for NT-3-NEText (4.6935 Å) and TrkC-NEText (2.1365 Å). In summary, immunocomplexes reached statistical relevance in the T cells of the control group contrary to the results obtained with schizophrenia. The reduced expression of NT-3, TrkC, and NET, and the lack of molecular complexes in T cells of patients with schizophrenia may lead to a peripheral dysregulation of intracellular signaling pathways and an abnormal reuptake of norepinephrine (NE) by NET. This peripheral molecular biomarker underlying schizophrenia reinforces the role of neurotrophins, and noradrenergic and immune systems in the pathophysiology of schizophrenia.


Assuntos
Simulação de Acoplamento Molecular , Neurotrofina 3/química , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Receptor trkC/química , Esquizofrenia/etiologia , Adulto , Biomarcadores/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurotrofina 3/genética , Neurotrofina 3/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/genética , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Estrutura Secundária de Proteína , Receptor trkC/genética , Receptor trkC/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo
3.
Schizophr Res ; 270: 260-272, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38944972

RESUMO

BACKGROUND: It is known that the immune system is dysregulated in schizophrenia, having a state similar to chronic neuroinflammation. The origin of this process is unknown, but it is known that T and B lymphocytes, which are components of the adaptive immune system, play an important role in the pathogenic mechanisms of schizophrenia. METHODS: We analysed the membrane of PBMCs from patients diagnosed with schizophrenia through proteomic analysis (n = 5 schizophrenia and n = 5 control). We found the presence of the Kv1.3 voltage-gated potassium channel and its auxiliary subunit ß1 (KCNAB1) and ß2 (KCNAB2). From a sample of 90 participants, we carried out a study on lymphocytes with whole-cell patch-clamp experiments (n = 7 schizophrenia and n = 5 control), western blot (n = 40 schizophrenia and n = 40 control) and confocal microscopy to evaluate the presence and function of different channels. Kv in both cells. RESULTS: We demonstrated the overexpression of Kv1.1, Kv1.2, Kv1.3, Kv1.6, Kv4.2, Kv4.3 and Kv7.2 channels in PBMCs from patients with schizophrenia. This study represents a groundbreaking exploration, as it involves an electrophysiological analysis performed on T and B lymphocytes from patients diagnosed of schizophrenia compared to healthy participants. We observed that B lymphocytes exhibited an increase in output current along with greater peak current amplitude and voltage conductance curves among patients with schizophrenia compared with healthy controls. CONCLUSIONS: This study showed the importance of the B lymphocyte in schizophrenia. We know that the immune system is altered in schizophrenia, but the physiological mechanisms of this system are not very well known. We suggest that the B lymphocyte may be relevant in the pathophysiology of schizophrenia and that it should be investigated in more depth, opening a new field of knowledge and possibilities for new treatments combining antipsychotics and immunomodulators. The limitation is that all participants received antipsychotic medication, which may have influenced the differences observed between patients and controls. This implies that more studies need to be done where the groups can be separated according to the antipsychotic drug.

4.
Nutrients ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513702

RESUMO

Human milk is the biological fluid with the highest exosome amount and is rich in microRNAs (miRNAs). These are key regulators of gene expression networks in both normal physiologic and disease contexts, miRNAs can influence many biological processes and have also shown promise as biomarkers for disease. One of the key aspects in the regeneration of the nervous system is that there are practically no molecules that can be used as potential drugs. In the first weeks of lactation, we know that human breast milk must contain the mechanisms to transmit molecular and biological information for brain development. For this reason, our objective is to identify new modulators of the nervous system that can be used to investigate neurodevelopmental functions based on miRNAs. To do this, we collected human breast milk samples according to the time of delivery and milk states: mature milk and colostrum at term; moderate and very preterm mature milk and colostrum; and late preterm mature milk. We extracted exosomes and miRNAs and realized the miRNA functional assays and target prediction. Our results demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function. We found 132 different miRNAs were identified across all samples. Sixty-nine miRNAs had significant differential expression after paired group comparison. These miRNAs are implicated in gene regulation of dopaminergic/glutamatergic synapses and neurotransmitter secretion and are related to the biological process that regulates neuron projection morphogenesis and synaptic vesicle transport. We observed differences according to the delivery time and with less clarity according to the milk type. Our data demonstrate that miRNAs are abundant in human milk and likely play significant roles in neurodevelopment and normal function.


Assuntos
MicroRNAs , Gravidez , Recém-Nascido , Feminino , Humanos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Leite Humano/metabolismo , Leite/metabolismo , Colostro/metabolismo , Lactação/genética , Sinapses/metabolismo
5.
Anal Methods ; 15(37): 4905-4917, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37718950

RESUMO

The growth and development of the human brain is a long and complex process that requires a precise sequence of genetic and molecular events. This begins in the third week of gestation with the differentiation of neural progenitor cells and extends at least until late adolescence, possibly for life. One of the defects of this development is that we know very little about the signals that modulate this sequence of events. The first 3 years of life, during breastfeeding, is one of the critical periods in brain development. In these first years of life, it is believed that neurodevelopmental problems may be the molecular causes of mental disorders. Therefore, we herein propose a new hypothesis, according to which the chemical signals that could modulate this entire complex sequence of events appear in this early period, and the molecular level study of human breast milk and colostrum of mothers who give birth to children in different gestation periods could give us information on proteins influencing this process. In this work, we collected milk and colostrum samples (term, late preterm and moderate/very preterm) and exosomes were isolated. The samples of exosomes and complete milk from each fraction were analyzed by LC-ESI-MS/MS. In this work, we describe proteins in the different fractions of mature milk and colostrum of mothers with term, late preterm, or very preterm delivery, which could be involved in the regulation of the nervous system by their functions. We describe how they differ in different types of milk, paving the way for the investigation of possible new neuroregulatory pathways as possible candidates to modulate the nervous system.


Assuntos
Exossomos , Nascimento Prematuro , Recém-Nascido , Feminino , Gravidez , Adolescente , Criança , Humanos , Leite Humano/química , Leite Humano/metabolismo , Colostro/química , Colostro/metabolismo , Nascimento Prematuro/metabolismo , Lactação/fisiologia , Exossomos/metabolismo , Proteômica , Espectrometria de Massas em Tandem
6.
Front Pharmacol ; 13: 850583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496309

RESUMO

At the beginning of the pandemic, we observed that lithium carbonate had a positive effect on the recovery of severely ill patients with COVID-19. Lithium is able to inhibit the replication of several types of viruses, some of which are similar to the SARS-CoV-2 virus, increase the immune response and reduce inflammation by preventing or reducing the cytokine storm. Previously, we published an article with data from six patients with severe COVID-19 infection, where we proposed that lithium carbonate could be used as a potential treatment for COVID-19. Now, we set out to conduct a randomized clinical trial number EudraCT 2020-002008-37 to evaluate the efficacy and safety of lithium treatment in patients infected with severe SARS-CoV-2. We showed that lithium was able to reduce the number of days of hospital and intensive care unit admission as well as the risk of death, reduces inflammatory cytokine levels by preventing cytokine storms, and also reduced the long COVID syndromes. We propose that lithium carbonate can be used to reduce the severity of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA