Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Am J Respir Crit Care Med ; 209(6): 670-682, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38127779

RESUMO

Hypoxemic respiratory failure is one of the leading causes of mortality in intensive care. Frequent assessment of individual physiological characteristics and delivery of personalized mechanical ventilation (MV) settings is a constant challenge for clinicians caring for these patients. Electrical impedance tomography (EIT) is a radiation-free bedside monitoring device that is able to assess regional lung ventilation and changes in aeration. With real-time tomographic functional images of the lungs obtained through a thoracic belt, clinicians can visualize and estimate the distribution of ventilation at different ventilation settings or following procedures such as prone positioning. Several studies have evaluated the performance of EIT to monitor the effects of different MV settings in patients with acute respiratory distress syndrome, allowing more personalized MV. For instance, EIT could help clinicians find the positive end-expiratory pressure that represents a compromise between recruitment and overdistension and assess the effect of prone positioning on ventilation distribution. The clinical impact of the personalization of MV remains to be explored. Despite inherent limitations such as limited spatial resolution, EIT also offers a unique noninvasive bedside assessment of regional ventilation changes in the ICU. This technology offers the possibility of a continuous, operator-free diagnosis and real-time detection of common problems during MV. This review provides an overview of the functioning of EIT, its main indices, and its performance in monitoring patients with acute respiratory failure. Future perspectives for use in intensive care are also addressed.


Assuntos
Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Humanos , Impedância Elétrica , Tomografia Computadorizada por Raios X/métodos , Pulmão , Insuficiência Respiratória/diagnóstico por imagem , Insuficiência Respiratória/terapia , Tomografia/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/terapia
2.
Curr Opin Crit Care ; 30(1): 43-52, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085866

RESUMO

PURPOSE OF REVIEW: This review presents the principles and possibilities of setting positive end-expiratory pressure (PEEP) using electrical impedance tomography (EIT). It summarizes the major findings of recent studies where EIT was applied to monitor the effects of PEEP on regional lung function and to guide the selection of individualized PEEP setting. RECENT FINDINGS: The most frequent approach of utilizing EIT for the assessment of PEEP effects and the PEEP setting during the time period from January 2022 till June 2023 was based on the analysis of pixel tidal impedance variation, typically acquired during stepwise incremental and/or decremental PEEP variation. The most common EIT parameters were the fraction of ventilation in various regions of interest, global inhomogeneity index, center of ventilation, silent spaces, and regional compliance of the respiratory system. The studies focused mainly on the spatial and less on the temporal distribution of ventilation. Contrast-enhanced EIT was applied in a few studies for the estimation of ventilation/perfusion matching. SUMMARY: The availability of commercial EIT devices resulted in an increase in clinical studies using this bedside imaging technology in neonatal, pediatric and adult critically ill patients. The clinical interest in EIT became evident but the potential of this method in clinical decision-making still needs to be fully exploited.


Assuntos
Respiração com Pressão Positiva , Tomografia Computadorizada por Raios X , Adulto , Recém-Nascido , Humanos , Criança , Impedância Elétrica , Respiração com Pressão Positiva/métodos , Tomografia Computadorizada por Raios X/métodos , Pulmão , Perfusão
3.
J Clin Monit Comput ; 37(2): 629-637, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333577

RESUMO

PURPOSE: This study aimed to evaluate the routine use of electrical impedance tomography (EIT) to diagnose pneumothorax (PTX) in mechanically ventilated patients in the intensive care unit (ICU). METHODS: A retrospective cohort study was conducted including mechanically ventilated supine patients who received EIT examinations. The EIT-based tidal variation was divided into ventral and dorsal regions of interest (ROIs): upper right (UR, ROI1), upper left (UL, ROI2) lower right (LR, ROI3), and lower left (LL, ROI4), and the ventilation defect score (DS) was calculated in each quadrant. Furthermore, horizontal ventral ventilation index (HVVI) was defined as ROI1% / ROI2% in the two ventral quadrants if ROI1% > ROI2%, otherwise HVVI = ROI2% / ROI1%. RESULTS: A total of 203 patients were included, 25 of them with confirmed PTX. In the PTX patients, preceding cardiac surgery was the most common cause of PTX. Compared with the patients without PTX, the PTX patients had a higher DS in the ventral quadrants [median and interquartile range (IQR): 1.00 (0.00, 2.00) vs. 0.00 (0.00, 0.00), P < 0.001] respectively, but similar in the dorsal quadrants [median and IQR: 1.00 (0.00, 1.00) vs. 0.00 (0.00, 1.00), P = 0.722]. Moreover, a higher HVVI was found in the PTX group [median and IQR: 2.51 (1.58, 3.52) vs. 1.36 (1.15, 1.77), P < 0.001]. The area under the receiver operating characteristic curve of the HVVI to differentiate PTX from non-PTX was 0.88, with a sensitivity of 70% and a specificity of 90% when the cut-off value was 2.57. CONCLUSION: The ventilation defect in the ventral regions and a high HVVI on EIT were observed in mechanically ventilated patients with PTX, which should trigger further diagnostics to confirm it.


Assuntos
Pneumotórax , Humanos , Pneumotórax/diagnóstico por imagem , Pneumotórax/etiologia , Respiração Artificial/métodos , Impedância Elétrica , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Unidades de Terapia Intensiva , Diagnóstico Precoce
4.
Am J Respir Crit Care Med ; 204(1): 82-91, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33545023

RESUMO

Rationale: The transition to air breathing at birth is a seminal respiratory event common to all humans, but the intrathoracic processes remain poorly understood. Objectives: The objectives of this prospective, observational study were to describe the spatiotemporal gas flow, aeration, and ventilation patterns within the lung in term neonates undergoing successful respiratory transition. Methods: Electrical impedance tomography was used to image intrathoracic volume patterns for every breath until 6 minutes from birth in neonates born by elective cesearean section and not needing resuscitation. Breaths were classified by video data, and measures of lung aeration, tidal flow conditions, and intrathoracic volume distribution calculated for each inflation. Measurements and Main Results: A total of 1,401 breaths from 17 neonates met all eligibility and data analysis criteria. Stable FRC was obtained by median (interquartile range) 43 (21-77) breaths. Breathing patterns changed from predominantly crying (80.9% first min) to tidal breathing (65.3% sixth min). From birth, tidal ventilation was not uniform within the lung, favoring the right and nondependent regions; P < 0.001 versus left and dependent regions (mixed-effects model). Initial crying created a unique volumetric pattern with delayed midexpiratory gas flow associated with intrathoracic volume redistribution (pendelluft flow) within the lung. This preserved FRC, especially within the dorsal and right regions. Conclusions: The commencement of air breathing at birth generates unique flow and volume states associated with marked spatiotemporal ventilation inhomogeneity not seen elsewhere in respiratory physiology. At birth, neonates innately brake expiratory flow to defend FRC gains and redistribute gas to less aerated regions.


Assuntos
Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Oximetria , Respiração com Pressão Positiva , Respiração , Feminino , Humanos , Recém-Nascido , Masculino , Estudos Prospectivos , Testes de Função Respiratória , Tomografia Computadorizada por Raios X
5.
BMC Anesthesiol ; 22(1): 251, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933365

RESUMO

BACKGROUND: Laparoscopic surgery in Trendelenburg position may impede mechanical ventilation (MV) due to positioning and high intra-abdominal pressure. We sought to identify the positive end-expiratory pressure (PEEP) levels necessary to counteract atelectasis formation ("Open-Lung-PEEP") and to provide an equal balance between overdistension and alveolar collapse ("Best-Compromise-PEEP"). METHODS: In 30 patients undergoing laparoscopic gynecological surgery, relative overdistension and alveolar collapse were assessed with electrical impedance tomography (EIT) during a decremental PEEP trial ranging from 20 to 4 cmH2O in supine position without capnoperitoneum and in Trendelenburg position with capnoperitoneum. RESULTS: In supine position, the median Open-Lung-PEEP was 12 (8-14) cmH2O with 8.7 (4.7-15.5)% of overdistension and 1.7 (0.4-2.2)% of collapse. Best-Compromise-PEEP was 8 (6.5-10) cmH2O with 4.2 (2.4-7.2)% of overdistension and 5.1 (3.9-6.5)% of collapse. In Trendelenburg position with capnoperitoneum, Open-Lung-PEEP was 18 (18-20) cmH 2 O (p < 0.0001 vs supine position) with 1.8 (0.5-3.9)% of overdistension and 0 (0-1.2)% of collapse and Best-Compromise-PEEP was 18 (16-20) cmH2O (p < 0.0001 vs supine position) with 1.5 (0.7-3.0)% of overdistension and 0.2 (0-2.7)% of collapse. Open-Lung-PEEP and Best-Compromise-PEEP were positively correlated with body mass index during MV in supine position but not in Trendelenburg position. CONCLUSION: The PEEP levels required for preventing alveolar collapse and for balancing collapse and overdistension in Trendelenburg position with capnoperitoneum were significantly higher than those required for achieving the same goals in supine position without capnoperitoneum. Even with high PEEP levels, alveolar overdistension was negligible during MV in Trendelenburg position with capnoperitoneum. TRIAL REGISTRATION: This study was prospectively registered at German Clinical Trials registry (DRKS00016974).


Assuntos
Laparoscopia , Respiração Artificial , Impedância Elétrica , Feminino , Procedimentos Cirúrgicos em Ginecologia , Humanos , Estudos Prospectivos , Respiração Artificial/métodos
6.
Crit Care ; 25(1): 230, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193224

RESUMO

BACKGROUND: Individualized positive end-expiratory pressure (PEEP) by electrical impedance tomography (EIT) has potential interest in the optimization of ventilation distribution in acute respiratory distress syndrome (ARDS). The aim of the study was to determine whether early individualized titration of PEEP with EIT improved outcomes in patients with ARDS. METHODS: A total of 117 ARDS patients receiving mechanical ventilation were randomly assigned to EIT group (n = 61, PEEP adjusted based on ventilation distribution) or control group (n = 56, low PEEP/FiO2 table). The primary outcome was 28-day mortality. Secondary and exploratory outcomes were ventilator-free days, length of ICU stay, incidence of pneumothorax and barotrauma, and difference in Sequential Organ Failure Assessment (SOFA) score at day 1 (ΔD1-SOFA) and day 2 (ΔD2-SOFA) compared with baseline. MEASUREMENTS AND MAIN RESULTS: There was no statistical difference in the value of PEEP between the EIT group and control group, but the combination of PEEP and FiO2 was different between groups. In the control group, a significantly positive correlation was found between the PEEP value and the corresponding FiO2 (r = 0.47, p < 0.00001) since a given matched table was used for PEEP settings. Diverse combinations of PEEP and FiO2 were found in the EIT group (r = 0.05, p = 0.68). There was no significant difference in mortality rate (21% vs. 27%, EIT vs. control, p = 0.63), ICU length of stay (13.0 (7.0, 25.0) vs 10.0 (7.0, 14.8), median (25th-75th percentile); p = 0.17), and ventilator-free days at day 28 (14.0 (2.0, 23.0) vs 19.0 (0.0, 24.0), p = 0.55) between the two groups. The incidence of new barotrauma was zero. Compared with control group, significantly lower ΔD1-SOFA and ΔD2-SOFA were found in the EIT group (p < 0.001) in a post hoc comparison. Moreover, the EIT group exhibited a significant decrease of SOFA at day 2 compared with baseline (paired t-test, difference by - 1 (- 3.5, 0), p = 0.001). However, the control group did show a similar decrease (difference by 1 (- 2, 2), p = 0.131). CONCLUSION: Our study showed a 6% absolute decrease in mortality in the EIT group: a statistically non-significant, but clinically non-negligible result. This result along with the showed improvement in organ function might justify further reserach to validate the beneficial effect of individualized EIT-guided PEEP setting on clinical outcomes of patients with ARDS. TRIAL REGISTRATION: ClinicalTrials, NCT02361398. Registered 11 February 2015-prospectively registered, https://clinicaltrials.gov/show/NCT02361398 .


Assuntos
Impedância Elétrica/uso terapêutico , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Tomografia/estatística & dados numéricos , Adulto , Idoso , Análise de Variância , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Escores de Disfunção Orgânica , Respiração com Pressão Positiva/instrumentação , Respiração com Pressão Positiva/estatística & dados numéricos , Estudos Prospectivos , Síndrome do Desconforto Respiratório/epidemiologia , Tomografia/métodos
7.
Acta Anaesthesiol Scand ; 65(7): 877-885, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33294975

RESUMO

BACKGROUND: The aim of the study was to examine the post-operative ventilation distribution changes in cardiac surgical patients after traditional full sternotomy (FS) or minimally invasive thoracotomy (MIT). METHODS: A total of 40 patients scheduled for FS with two-lung ventilation or MIT with one-lung ventilation were included. Ventilation distribution was measured with electrical impedance tomography (EIT) at T1, before surgery; T2, after surgery in ICU before weaning; T3, 24 hours after extubation. EIT-based parameters were calculated to assess the ventilation distribution, including the left-to-right lung ratio, ventral-to-dorsal ratio, and the global inhomogeneity index. RESULTS: The global inhomogeneity index increased at T2 and T3 compared to T1 in all patients but only statistically significant in patients with MIT (FS, P = .06; MIT, P < .01). Notable decrease in the dorsal regions (FS) or in the non-ventilated side (MIT) was observed at T2. Ventilation distribution was partially improved at T3 but huge variations of recovery progresses were found in all patients regardless of the surgery types. Subgroup analysis indicated that operation duration was significantly lower in the MIT group (240 ± 40 in FS vs 205 ± 90 minutes in MIT, median ± interquartile range, P < .05) but the incidence of atrial fibrillation/flutter was significantly higher (5% in FS vs 50% in MIT, P < .01). Other exploratory outcomes showed no statistical differences. CONCLUSIONS: Ventilation distribution was impaired after cardiac surgery. The recovery process of ventilation homogeneity was strongly depending on individuals so that MIT was not always superior in this aspect. EIT may help to identify the patients requiring further care after surgery.


Assuntos
Esternotomia , Toracotomia , Impedância Elétrica , Humanos , Pulmão/diagnóstico por imagem , Pulmão/cirurgia , Tomografia
8.
BMC Pulm Med ; 21(1): 38, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482796

RESUMO

BACKGROUND: Clinical management of COVID-19 requires close monitoring of lung function. While computed tomography (CT) offers ideal way to identify the phenotypes, it cannot monitor the patient response to therapeutic interventions. We present a case of ventilation management for a COVID-19 patient where electrical impedance tomography (EIT) was used to personalize care. CASE PRESENTATION: The patient developed acute respiratory distress syndrome, required invasive mechanical ventilation, and was subsequently weaned. EIT was used multiple times: to titrate the positive end-expiratory pressure, understand the influence of body position, and guide the support levels during weaning and after extubation. We show how EIT provides bedside monitoring of the patient´s response to various therapeutic interventions and helps guide treatments. CONCLUSION: EIT provides unique information that may help the ventilation management in the pandemic of COVID-19.


Assuntos
COVID-19/diagnóstico por imagem , Impedância Elétrica , Pulmão/diagnóstico por imagem , Posicionamento do Paciente/métodos , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Tomografia/métodos , COVID-19/fisiopatologia , COVID-19/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Respiração com Pressão Positiva/métodos , Síndrome do Desconforto Respiratório/fisiopatologia , Síndrome do Desconforto Respiratório/terapia , SARS-CoV-2 , Desmame do Respirador/métodos
9.
Crit Care ; 24(1): 586, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993811

RESUMO

BACKGROUND: High positive end-expiratory pressures (PEEP) may induce overdistension/recruitment and affect ventilation-perfusion matching (VQMatch) in mechanically ventilated patients. This study aimed to investigate the association between PEEP-induced lung overdistension/recruitment and VQMatch by electrical impedance tomography (EIT). METHODS: The study was conducted prospectively on 30 adult mechanically ventilated patients: 18/30 with ARDS and 12/30 with high risk for ARDS. EIT measurements were performed at zero end-expiratory pressures (ZEEP) and subsequently at high (12-15 cmH2O) PEEP. The number of overdistended pixels over the number of recruited pixels (O/R ratio) was calculated, and the patients were divided into low O/R (O/R ratio < 15%) and high O/R groups (O/R ratio ≥ 15%). The global inhomogeneity (GI) index was calculated to evaluate the ventilation distribution. Lung perfusion image was calculated from the EIT impedance-time curves caused by 10 ml 10% NaCl injection during a respiratory pause (> 8 s). DeadSpace%, Shunt%, and VQMatch% were calculated based on lung EIT perfusion and ventilation images. RESULTS: Increasing PEEP resulted in recruitment mainly in dorsal regions and overdistension mainly in ventral regions. ΔVQMatch% (VQMatch% at high PEEP minus that at ZEEP) was significantly correlated with recruited pixels (r = 0.468, P = 0.009), overdistended pixels (r = - 0.666, P < 0.001), O/R ratio (r = - 0.686, P < 0.001), and ΔSpO2 (r = 0.440, P = 0.015). Patients in the low O/R ratio group (14/30) had significantly higher Shunt% and lower VQMatch% than those in the high O/R ratio group (16/30) at ZEEP but not at high PEEP. Comparable DeadSpace% was found in both groups. A high PEEP caused a significant improvement of VQMatch%, DeadSpace%, Shunt%, and GI in the low O/R ratio group, but not in the high O/R ratio group. Using O/R ratio of 15% resulted in a sensitivity of 81% and a specificity of 100% for an increase of VQMatch% > 20% in response to high PEEP. CONCLUSIONS: Change of ventilation-perfusion matching was associated with regional overdistention and recruitment induced by PEEP. A low O/R ratio induced by high PEEP might indicate a more homogeneous ventilation and improvement of VQMatch. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04081155 . Registered on 9 September 2019-retrospectively registered.


Assuntos
Ventilação Pulmonar/fisiologia , Solução Salina/uso terapêutico , Tomografia Computadorizada por Raios X/métodos , Adulto , China , Impedância Elétrica/uso terapêutico , Feminino , Hidratação/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Respiração com Pressão Positiva/métodos , Estudos Prospectivos , Tomografia Computadorizada por Raios X/estatística & dados numéricos
10.
J Clin Monit Comput ; 34(5): 903-911, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31624996

RESUMO

Previous animal experiments have suggested that electrical impedance tomography (EIT) has the ability to noninvasively track changes in cardiac stroke volume (SV). The present study intended to reproduce these findings in patients during a fluid challenge. In a prospective observational study including critically ill patients on mechanical ventilation, SV was estimated via ECG-gated EIT before and after a fluid challenge and compared to transpulmonary thermodilution reference measurements. Relative changes in EIT-derived cardiosynchronous impedance changes in the heart ([Formula: see text]) and lung region ([Formula: see text]) were compared to changes in reference SV by assessing the concordance rate (CR) and Pearson's correlation coefficient (R). We compared 39 measurements of 20 patients. [Formula: see text] did not show to be a reliable estimate for tracking changes of SV (CR = 52.6% and R = 0.13 with P = 0.44). In contrast, [Formula: see text] showed an acceptable trending performance (CR = 94.4% and R = 0.72 with P < 0.0001). Our results indicate that ECG-gated EIT measurements of [Formula: see text] are able to noninvasively monitor changes in SV during a fluid challenge in critically ill patients. However, this was not possible using [Formula: see text]. The present approach is limited by the influences induced by ventilation, posture or changes in electrode-skin contact and requires further validation.


Assuntos
Estado Terminal , Tomografia , Animais , Impedância Elétrica , Humanos , Volume Sistólico , Termodiluição
11.
J Clin Monit Comput ; 34(5): 1005-1013, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31587120

RESUMO

Positive end-expiratory pressure (PEEP) can be titrated by electrical impedance tomography (EIT). The aim of the present study was to examine the performance of different EIT measures during PEEP trials with the aim of identifying "optimum" PEEP and to provide possible interpretations of largely diverging results. After recruitment (maximum plateau pressure 35 cmH2O), decremental PEEP trial with steps of 2 cmH2O and duration of 2 min per step was performed. Ventilation gain and loss, the global inhomogeneity (GI) index, trend of end-expiratory lung impedance (EELI) and regional compliance (Creg) for estimation of overdistension and collapse were calculated. Largely diverging results of PEEP selection among the measures were defined as differences ≥ 4 PEEP steps (i.e. ≥ 8 cmH2O). In 30 ARDS patients we examined so far, 3 patients showed significant differences in PEEP selections. Overdistension and collapse estimation based on Creg tended to select lower PEEP while the GI index and EELI trend suggested higher PEEP settings. Regional inspiration times were heterogeneous indicating that the assumption of a uniform driving pressure in the calculation of Creg may not be valid. Judging by the predominant ventilation distribution in the most dependent regions, these patients were non-recruitable with the applied recruitment method or pressure levels. The existence of differences in the recommended PEEP among the analyzed EIT measures might be an indicator of non-recruitable lungs and heterogeneous airway resistances. In these extreme cases, the largely diverging results may prompt the attending clinician to develop individual ventilation strategies.Clinical Trial Registration Registration number NCT03112512, https://clinicaltrials.gov/ Registered 13 April 2017.


Assuntos
Síndrome do Desconforto Respiratório , Impedância Elétrica , Humanos , Incidência , Respiração com Pressão Positiva , Síndrome do Desconforto Respiratório/terapia , Tomografia Computadorizada por Raios X
12.
Crit Care ; 23(1): 338, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666136

RESUMO

BACKGROUND: Adaptive mechanical ventilation automatically adjusts respiratory rate (RR) and tidal volume (VT) to deliver the clinically desired minute ventilation, selecting RR and VT based on Otis' equation on least work of breathing. However, the resulting VT may be relatively high, especially in patients with more compliant lungs. Therefore, a new mode of adaptive ventilation (adaptive ventilation mode 2, AVM2) was developed which automatically minimizes inspiratory power with the aim of ensuring lung-protective combinations of VT and RR. The aim of this study was to investigate whether AVM2 reduces VT, mechanical power, and driving pressure (ΔPstat) and provides similar gas exchange when compared to adaptive mechanical ventilation based on Otis' equation. METHODS: A prospective randomized cross-over study was performed in 20 critically ill patients on controlled mechanical ventilation, including 10 patients with acute respiratory distress syndrome (ARDS). Each patient underwent 1 h of mechanical ventilation with AVM2 and 1 h of adaptive mechanical ventilation according to Otis' equation (adaptive ventilation mode, AVM). At the end of each phase, we collected data on VT, mechanical power, ΔP, PaO2/FiO2 ratio, PaCO2, pH, and hemodynamics. RESULTS: Comparing adaptive mechanical ventilation with AVM2 to the approach based on Otis' equation (AVM), we found a significant reduction in VT both in the whole study population (7.2 ± 0.9 vs. 8.2 ± 0.6 ml/kg, p <  0.0001) and in the subgroup of patients with ARDS (6.6 ± 0.8 ml/kg with AVM2 vs. 7.9 ± 0.5 ml/kg with AVM, p <  0.0001). Similar reductions were observed for ΔPstat (whole study population: 11.5 ± 1.6 cmH2O with AVM2 vs. 12.6 ± 2.5 cmH2O with AVM, p <  0.0001; patients with ARDS: 11.8 ± 1.7 cmH2O with AVM2 and 13.3 ± 2.7 cmH2O with AVM, p = 0.0044) and total mechanical power (16.8 ± 3.9 J/min with AVM2 vs. 18.6 ± 4.6 J/min with AVM, p = 0.0024; ARDS: 15.6 ± 3.2 J/min with AVM2 vs. 17.5 ± 4.1 J/min with AVM, p = 0.0023). There was a small decrease in PaO2/FiO2 (270 ± 98 vs. 291 ± 102 mmHg with AVM, p = 0.03; ARDS: 194 ± 55 vs. 218 ± 61 with AVM, p = 0.008) and no differences in PaCO2, pH, and hemodynamics. CONCLUSIONS: Adaptive mechanical ventilation with automated minimization of inspiratory power may lead to more lung-protective ventilator settings when compared with adaptive mechanical ventilation according to Otis' equation. TRIAL REGISTRATION: The study was registered at the German Clinical Trials Register ( DRKS00013540 ) on December 1, 2017, before including the first patient.


Assuntos
Respiração Artificial/métodos , Idoso , Estudos Cross-Over , Feminino , Alemanha , Hemodinâmica/fisiologia , Humanos , Complacência Pulmonar/fisiologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Estudos Prospectivos , Respiração Artificial/tendências , Mecânica Respiratória/fisiologia , Volume de Ventilação Pulmonar/fisiologia
17.
J Clin Monit Comput ; 32(4): 741-751, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28940117

RESUMO

In mechanically ventilated patients, measurement of respiratory system compliance (Crs) is of high clinical interest. Spontaneous breathing activity during pressure support ventilation (PSV) can impede the correct assessment of Crs and also alter the true Crs by inducing lung recruitment. We describe a method for determination of Crs during PSV and assess its accuracy in a study on 20 mechanically ventilated patients. To assess Crs during pressure support ventilation (Crs,PSV), we performed repeated changes in pressure support level by ± 2 cmH2O. Crs,PSV was calculated from the volume change induced by these changes in pressure support level, taking into account the inspiration time and the expiratory time constant. As reference methods, we used Crs, measured during volume controlled ventilation (Crs,VCV). In a post-hoc analysis, we assessed Crs during the last 20% of the volume-controlled inflation (Crs,VCV20). Values were compared by linear regression and Bland-Altman methods comparison. Comparing Crs,PSV to the reference value Crs,VCV, we found a coefficient of determination (r2) of 0.90, but a relatively high bias of - 7 ml/cm H2O (95% limits of agreement - 16.7 to + 2.7 ml/cmH2O). Comparison with Crs,VCV20 resulted in a negligible bias (- 1.3 ml/cmH2O, 95% limits of agreement - 13.9 to + 11.3) and r2 of 0.81. We conclude that the novel method provides an estimate of end-inspiratory Crs during PSV. Despite its limited accuracy, it might be useful for non-invasive monitoring of Crs in patients undergoing pressure support ventilation.


Assuntos
Suporte Ventilatório Interativo/métodos , Complacência Pulmonar/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Unidades de Terapia Intensiva , Suporte Ventilatório Interativo/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/métodos , Monitorização Fisiológica/estatística & dados numéricos , Bloqueio Neuromuscular , Projetos Piloto , Estudos Prospectivos , Respiração Artificial/métodos , Respiração Artificial/estatística & dados numéricos , Testes de Função Respiratória/métodos , Testes de Função Respiratória/estatística & dados numéricos , Mecânica Respiratória/fisiologia
18.
Am J Physiol Lung Cell Mol Physiol ; 312(1): L32-L41, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881405

RESUMO

Respiratory transition at birth involves rapidly clearing fetal lung liquid and preventing efflux back into the lung while aeration is established. We have developed a sustained inflation (SIOPT) individualized to volume response and a dynamic tidal positive end-expiratory pressure (PEEP) (open lung volume, OLV) strategy that both enhance this process. We aimed to compare the effect of each with a group managed with PEEP of 8 cmH2O and no recruitment maneuver (No-RM), on gas exchange, lung mechanics, spatiotemporal aeration, and lung injury in 127 ± 1 day preterm lambs. Forty-eight fetal-instrumented lambs exposed to antenatal steroids were ventilated for 60 min after application of the allocated strategy. Spatiotemporal aeration and lung mechanics were measured with electrical impedance tomography and forced-oscillation, respectively. At study completion, molecular and histological markers of lung injury were analyzed. Mean (SD) aeration at the end of the SIOPT and OLV groups was 32 (22) and 38 (15) ml/kg, compared with 17 (10) ml/kg (180 s) in the No-RM (P = 0.024, 1-way ANOVA). This translated into better oxygenation at 60 min (P = 0.047; 2-way ANOVA) resulting from better distal lung tissue aeration in SIOPT and OLV. There was no difference in lung injury. Neither SIOPT nor OLV achieved homogeneous aeration. Histological injury and mRNA biomarker upregulation were more likely in the regions with better initial aeration, suggesting volutrauma. Tidal ventilation or an SI achieves similar aeration if optimized, suggesting that preventing fluid efflux after lung liquid clearance is at least as important as fluid clearance during the initial inflation at birth.


Assuntos
Pulmão/fisiopatologia , Nascimento Prematuro/fisiopatologia , Animais , Animais Recém-Nascidos , Complacência (Medida de Distensibilidade) , Impedância Elétrica , Pulmão/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Lesão Pulmonar/fisiopatologia , Oxigênio/metabolismo , Pressão , Respiração , Respiração Artificial , Mecânica Respiratória/fisiologia , Ovinos , Volume de Ventilação Pulmonar
19.
Thorax ; 72(1): 83-93, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27596161

RESUMO

Electrical impedance tomography (EIT) has undergone 30 years of development. Functional chest examinations with this technology are considered clinically relevant, especially for monitoring regional lung ventilation in mechanically ventilated patients and for regional pulmonary function testing in patients with chronic lung diseases. As EIT becomes an established medical technology, it requires consensus examination, nomenclature, data analysis and interpretation schemes. Such consensus is needed to compare, understand and reproduce study findings from and among different research groups, to enable large clinical trials and, ultimately, routine clinical use. Recommendations of how EIT findings can be applied to generate diagnoses and impact clinical decision-making and therapy planning are required. This consensus paper was prepared by an international working group, collaborating on the clinical promotion of EIT called TRanslational EIT developmeNt stuDy group. It addresses the stated needs by providing (1) a new classification of core processes involved in chest EIT examinations and data analysis, (2) focus on clinical applications with structured reviews and outlooks (separately for adult and neonatal/paediatric patients), (3) a structured framework to categorise and understand the relationships among analysis approaches and their clinical roles, (4) consensus, unified terminology with clinical user-friendly definitions and explanations, (5) a review of all major work in thoracic EIT and (6) recommendations for future development (193 pages of online supplements systematically linked with the chief sections of the main document). We expect this information to be useful for clinicians and researchers working with EIT, as well as for industry producers of this technology.


Assuntos
Impedância Elétrica , Pneumopatias/diagnóstico por imagem , Pneumopatias/fisiopatologia , Tomografia , Adolescente , Adulto , Débito Cardíaco , Criança , Pré-Escolar , Consenso , Humanos , Lactente , Recém-Nascido , Pneumopatias/terapia , Circulação Pulmonar , Respiração Artificial , Terminologia como Assunto , Tomografia/métodos
20.
Pediatr Res ; 82(4): 712-720, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28604757

RESUMO

BackgroundCurrent sustained lung inflation (SI) approaches use uniform pressures and durations. We hypothesized that gestational-age-related mechanical and developmental differences would affect the time required to achieve optimal lung aeration, and resultant lung volumes, during SI delivery at birth in lambs.Methods49 lambs, in five cohorts between 118 and 139 days of gestation (term 142 d), received a standardized 40 cmH2O SI, which was delivered until 10 s after lung volume stability (optimal aeration) was visualized on real-time electrical impedance tomography (EIT), or to a maximum duration of 180 s. Time to stable lung aeration (Tstable) within the whole lung, gravity-dependent, and non-gravity-dependent regions, was determined from EIT recordings.ResultsTstable was inversely related to gestation (P<0.0001, Kruskal-Wallis test), with the median (range) being 229 (85,306) s and 72 (50,162) s in the 118-d and 139-d cohorts, respectively. Lung volume at Tstable increased with gestation from a mean (SD) of 20 (17) ml/kg at 118 d to 56 (13) ml/kg at 139 d (P=0.002, one-way ANOVA). There were no gravity-dependent regional differences in Tstable or aeration.ConclusionsThe trajectory of aeration during an SI at birth is influenced by gestational age in lambs. An understanding of this may assist in developing SI protocols that optimize lung aeration for all infants.


Assuntos
Pulmão/fisiopatologia , Nascimento Prematuro/terapia , Ventilação Pulmonar , Respiração Artificial/métodos , Respiração , Animais , Animais Recém-Nascidos , Impedância Elétrica , Idade Gestacional , Pulmão/diagnóstico por imagem , Medidas de Volume Pulmonar/métodos , Modelos Biológicos , Nascimento Prematuro/diagnóstico por imagem , Nascimento Prematuro/fisiopatologia , Carneiro Doméstico , Fatores de Tempo , Tomografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA