Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 573(7773): 251-255, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31511682

RESUMO

Most chemical experiments are planned by human scientists and therefore are subject to a variety of human cognitive biases1, heuristics2 and social influences3. These anthropogenic chemical reaction data are widely used to train machine-learning models4 that are used to predict organic5 and inorganic6,7 syntheses. However, it is known that societal biases are encoded in datasets and are perpetuated in machine-learning models8. Here we identify as-yet-unacknowledged anthropogenic biases in both the reagent choices and reaction conditions of chemical reaction datasets using a combination of data mining and experiments. We find that the amine choices in the reported crystal structures of hydrothermal synthesis of amine-templated metal oxides9 follow a power-law distribution in which 17% of amine reactants occur in 79% of reported compounds, consistent with distributions in social influence models10-12. An analysis of unpublished historical laboratory notebook records shows similarly biased distributions of reaction condition choices. By performing 548 randomly generated experiments, we demonstrate that the popularity of reactants or the choices of reaction conditions are uncorrelated to the success of the reaction. We show that randomly generated experiments better illustrate the range of parameter choices that are compatible with crystal formation. Machine-learning models that we train on a smaller randomized reaction dataset outperform models trained on larger human-selected reaction datasets, demonstrating the importance of identifying and addressing anthropogenic biases in scientific data.


Assuntos
Viés , Técnicas de Química Sintética/estatística & dados numéricos , Pessoal de Laboratório/estatística & dados numéricos , Aprendizado de Máquina , Humanos , Pessoal de Laboratório/psicologia
2.
Nature ; 533(7601): 73-6, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27147027

RESUMO

Inorganic-organic hybrid materials such as organically templated metal oxides, metal-organic frameworks (MOFs) and organohalide perovskites have been studied for decades, and hydrothermal and (non-aqueous) solvothermal syntheses have produced thousands of new materials that collectively contain nearly all the metals in the periodic table. Nevertheless, the formation of these compounds is not fully understood, and development of new compounds relies primarily on exploratory syntheses. Simulation- and data-driven approaches (promoted by efforts such as the Materials Genome Initiative) provide an alternative to experimental trial-and-error. Three major strategies are: simulation-based predictions of physical properties (for example, charge mobility, photovoltaic properties, gas adsorption capacity or lithium-ion intercalation) to identify promising target candidates for synthetic efforts; determination of the structure-property relationship from large bodies of experimental data, enabled by integration with high-throughput synthesis and measurement tools; and clustering on the basis of similar crystallographic structure (for example, zeolite structure classification or gas adsorption properties). Here we demonstrate an alternative approach that uses machine-learning algorithms trained on reaction data to predict reaction outcomes for the crystallization of templated vanadium selenites. We used information on 'dark' reactions--failed or unsuccessful hydrothermal syntheses--collected from archived laboratory notebooks from our laboratory, and added physicochemical property descriptions to the raw notebook information using cheminformatics techniques. We used the resulting data to train a machine-learning model to predict reaction success. When carrying out hydrothermal synthesis experiments using previously untested, commercially available organic building blocks, our machine-learning model outperformed traditional human strategies, and successfully predicted conditions for new organically templated inorganic product formation with a success rate of 89 per cent. Inverting the machine-learning model reveals new hypotheses regarding the conditions for successful product formation.

3.
J Chem Phys ; 156(6): 064108, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168359

RESUMO

Autonomous experimentation systems use algorithms and data from prior experiments to select and perform new experiments in order to meet a specified objective. In most experimental chemistry situations, there is a limited set of prior historical data available, and acquiring new data may be expensive and time consuming, which places constraints on machine learning methods. Active learning methods prioritize new experiment selection by using machine learning model uncertainty and predicted outcomes. Meta-learning methods attempt to construct models that can learn quickly with a limited set of data for a new task. In this paper, we applied the model-agnostic meta-learning (MAML) model and the Probabilistic LATent model for Incorporating Priors and Uncertainty in few-Shot learning (PLATIPUS) approach, which extends MAML to active learning, to the problem of halide perovskite growth by inverse temperature crystallization. Using a dataset of 1870 reactions conducted using 19 different organoammonium lead iodide systems, we determined the optimal strategies for incorporating historical data into active and meta-learning models to predict reaction compositions that result in crystals. We then evaluated the best three algorithms (PLATIPUS and active-learning k-nearest neighbor and decision tree algorithms) with four new chemical systems in experimental laboratory tests. With a fixed budget of 20 experiments, PLATIPUS makes superior predictions of reaction outcomes compared to other active-learning algorithms and a random baseline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA