Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Physiol Rev ; 96(1): 253-305, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26676145

RESUMO

Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.


Assuntos
Cálcio/metabolismo , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Sinalização do Cálcio , Distrofina/deficiência , Distrofina/genética , Regulação da Expressão Gênica , Humanos , Desenvolvimento Muscular , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , Distrofias Musculares/fisiopatologia , Regeneração
2.
Hum Mol Genet ; 28(3): 386-395, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30256963

RESUMO

Syntrophins are a family of modular adaptor proteins that are part of the dystrophin protein complex, where they recruit and anchor a variety of signaling proteins. Previously we generated mice lacking α- and/or ß2-syntrophin but showed that in the absence of one isoform, other syntrophin isoforms can partially compensate. Therefore, in the current study, we generated mice that lacked α, ß1 and ß2-syntrophins [triple syntrophin knockout (tKO) mice] and assessed skeletal and cardiac muscle function. The tKO mice showed a profound reduction in voluntary wheel running activity at both 6 and 12 months of age. Function of the tibialis anterior was assessed in situ and we found that the specific force of tKO muscle was decreased by 20-25% compared with wild-type mice. This decrease was accompanied by a shift in fiber-type composition from fast 2B to more oxidative fast 2A fibers. Using echocardiography to measure cardiac function, it was revealed that tKO hearts had left ventricular cardiac dysfunction and were hypertrophic, with a thicker left ventricular posterior wall. Interestingly, we also found that membrane-localized dystrophin expression was lower in both skeletal and cardiac muscles of tKO mice. Since dystrophin mRNA levels were not different in tKO, this finding suggests that syntrophins may regulate dystrophin trafficking to, or stabilization at, the sarcolemma. These results show that the loss of all three major muscle syntrophins has a profound effect on exercise performance, and skeletal and cardiac muscle dysfunction contributes to this deficiency.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas Associadas à Distrofina/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Musculares/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Distrofina/genética , Distrofina/fisiologia , Proteínas Associadas à Distrofina/genética , Coração/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Miocárdio/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia
3.
Hum Mol Genet ; 27(17): 2978-2985, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790927

RESUMO

Mutation of the gene encoding dystrophin leads to Duchenne and Becker muscular dystrophy (DMD and BMD). Currently, dystrophin is thought to function primarily as a structural protein, connecting the muscle cell actin cytoskeleton to the extra-cellular matrix. In addition to this structural role, dystrophin also plays an important role as a scaffold that organizes an array of signaling proteins including sodium, potassium, and calcium channels, kinases, and nitric oxide synthase (nNOS). Many of these signaling proteins are linked to dystrophin via syntrophin, an adapter protein that is known to bind directly to two sites in the carboxyl terminal region of dystrophin. A search of the dystrophin sequence revealed three additional potential syntrophin binding sites (SBSs) within the spectrin-like repeat (SLR) region of dystrophin. Binding assays revealed that the site at SLR 17 bound specifically to the α isoform of syntrophin while the site at SLR 22 bound specifically to the ß-syntrophins. The SLR 17 α-SBS contained the core sequence known to be required for nNOS-dystrophin interaction. In vitro and in vivo assays indicate that α-syntrophin facilitates the nNOS-dystrophin interaction at this site rather than nNOS binding directly to dystrophin as previously reported. The identification of multiple SBSs within the SLR region of dystrophin demonstrates that this region functions as a signaling scaffold. The signaling role of the SLR region of dystrophin will need to be considered for effective gene replacement or exon skipping based DMD/BMD therapies.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Distrofina/metabolismo , Óxido Nítrico Sintase Tipo I/fisiologia , Sequências Repetitivas de Aminoácidos , Espectrina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Associadas à Distrofina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Homologia de Sequência , Espectrina/química
4.
Glia ; 67(6): 1138-1149, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30803043

RESUMO

Proper function of the retina depends heavily on a specialized form of retinal glia called Müller cells. These cells carry out important homeostatic functions that are contingent on their polarized nature. Specifically, the Müller cell endfeet that contact retinal microvessels and the corpus vitreum show a tenfold higher concentration of the inwardly rectifying potassium channel Kir 4.1 than other Müller cell plasma membrane domains. This highly selective enrichment of Kir 4.1 allows K+ to be siphoned through endfoot membranes in a special form of spatial buffering. Here, we show that Kir 4.1 is enriched in endfoot membranes through an interaction with ß1-syntrophin. Targeted disruption of this syntrophin caused a loss of Kir 4.1 from Müller cell endfeet without affecting the total level of Kir 4.1 expression in the retina. Targeted disruption of α1-syntrophin had no effect on Kir 4.1 localization. Our findings show that the Kir 4.1 aggregation that forms the basis for K+ siphoning depends on a specific syntrophin isoform that colocalizes with Kir 4.1 in Müller endfoot membranes.


Assuntos
Proteínas Associadas à Distrofina/deficiência , Células Ependimogliais/metabolismo , Deleção de Genes , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Retina/metabolismo , Animais , Proteínas Associadas à Distrofina/genética , Células Ependimogliais/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Potássio Corretores do Fluxo de Internalização/genética , Agregados Proteicos/fisiologia , Retina/patologia
5.
Proc Natl Acad Sci U S A ; 113(4): 1068-73, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26755585

RESUMO

Facilitation and inactivation of P/Q-type calcium (Ca(2+)) currents through the regulation of voltage-gated Ca(2+) (CaV) 2.1 channels by Ca(2+) sensor (CaS) proteins contributes to the facilitation and rapid depression of synaptic transmission in cultured neurons that transiently express CaV2.1 channels. To examine the modulation of endogenous CaV2.1 channels by CaS proteins in native synapses, we introduced a mutation (IM-AA) into the CaS protein-binding site in the C-terminal domain of CaV2.1 channels in mice, and tested synaptic facilitation and depression in neuromuscular junction synapses that use exclusively CaV2.1 channels for Ca(2+) entry that triggers synaptic transmission. Even though basal synaptic transmission was unaltered in the neuromuscular synapses in IM-AA mice, we found reduced short-term facilitation in response to paired stimuli at short interstimulus intervals in IM-AA synapses. In response to trains of action potentials, we found increased facilitation at lower frequencies (10-30 Hz) in IM-AA synapses accompanied by slowed synaptic depression, whereas synaptic facilitation was reduced at high stimulus frequencies (50-100 Hz) that would induce strong muscle contraction. As a consequence of altered regulation of CaV2.1 channels, the hindlimb tibialis anterior muscle in IM-AA mice exhibited reduced peak force in response to 50 Hz stimulation and increased muscle fatigue. The IM-AA mice also had impaired motor control, exercise capacity, and grip strength. Taken together, our results indicate that regulation of CaV2.1 channels by CaS proteins is essential for normal synaptic plasticity at the neuromuscular junction and for muscle strength, endurance, and motor coordination in mice in vivo.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Força Muscular , Plasticidade Neuronal/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Junção Neuromuscular/fisiologia , Condicionamento Físico Animal , Transmissão Sináptica
6.
Hum Mol Genet ; 25(1): 158-66, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26604149

RESUMO

Nitric oxide (NO) is a key regulator of skeletal muscle function and metabolism, including vasoregulation, mitochondrial function, glucose uptake, fatigue and excitation-contraction coupling. The main generator of NO in skeletal muscle is the muscle-specific form of neuronal nitric oxide synthase (nNOSµ) produced by the NOS1 gene. Skeletal muscle nNOSµ is predominantly localized at the sarcolemma by interaction with the dystrophin protein complex (DPC). In Duchenne muscular dystrophy (DMD), loss of dystrophin leads to the mislocalization of nNOSµ from the sarcolemma to the cytosol. This perturbation has been shown to impair contractile function and cause muscle fatigue in dystrophic (mdx) mice. Here, we investigated the effect of restoring sarcolemmal nNOSµ on muscle contractile function in mdx mice. To achieve this, we designed a modified form of nNOSµ (NOS-M) that is targeted to the sarcolemma by palmitoylation, even in the absence of the DPC. When expressed specifically in mdx skeletal muscle, NOS-M significantly attenuates force loss owing to damaging eccentric contractions and repetitive isometric contractions (fatigue), while also improving force recovery after fatigue. Expression of unmodified nNOSµ at similar levels does not lead to sarcolemmal association and fails to improve muscle function. Aside from the benefits of sarcolemmal-localized NO production, NOS-M also increased the surface membrane levels of utrophin and other DPC proteins, including ß-dystroglycan, α-syntrophin and α-dystrobrevin in mdx muscle. These results suggest that the expression of NOS-M in skeletal muscle may be therapeutically beneficial in DMD and other muscle diseases characterized by the loss of nNOSµ from the sarcolemma.


Assuntos
Contração Muscular , Óxido Nítrico Sintase Tipo I/metabolismo , Sarcolema/metabolismo , Animais , Proteínas Associadas à Distrofina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Óxido Nítrico Sintase Tipo I/genética , Utrofina/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(41): 12864-9, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417069

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal, degenerative muscle disease with no effective treatment. DMD muscle pathogenesis is characterized by chronic inflammation, oxidative stress, and fibrosis. Statins, cholesterol-lowering drugs, inhibit these deleterious processes in ischemic diseases affecting skeletal muscle, and therefore have potential to improve DMD. However, statins have not been considered for DMD, or other muscular dystrophies, principally because skeletal-muscle-related symptoms are rare, but widely publicized, side effects of these drugs. Here we show positive effects of statins in dystrophic skeletal muscle. Simvastatin dramatically reduced damage and enhanced muscle function in dystrophic (mdx) mice. Long-term simvastatin treatment vastly improved overall muscle health in mdx mice, reducing plasma creatine kinase activity, an established measure of muscle damage, to near-normal levels. This reduction was accompanied by reduced inflammation, more oxidative muscle fibers, and improved strength of the weak diaphragm muscle. Shorter-term treatment protected against muscle fatigue and increased mdx hindlimb muscle force by 40%, a value comparable to current dystrophin gene-based therapies. Increased force correlated with reduced NADPH Oxidase 2 protein expression, the major source of oxidative stress in dystrophic muscle. Finally, in old mdx mice with severe muscle degeneration, simvastatin enhanced diaphragm force and halved fibrosis, a major cause of functional decline in DMD. These improvements were accompanied by autophagy activation, a recent therapeutic target for DMD, and less oxidative stress. Together, our findings highlight that simvastatin substantially improves the overall health and function of dystrophic skeletal muscles and may provide an unexpected, novel therapy for DMD and related neuromuscular diseases.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fibras Musculares Esqueléticas , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne , Sinvastatina/farmacologia , Animais , Creatina Quinase/sangue , Masculino , Camundongos , Camundongos Endogâmicos mdx , Complexos Multienzimáticos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , NADH NADPH Oxirredutases/metabolismo , Oxirredução/efeitos dos fármacos
8.
Hum Mol Genet ; 24(2): 492-505, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25214536

RESUMO

Approaches targeting nitric oxide (NO) signaling show promise as therapies for Duchenne and Becker muscular dystrophies. However, the mechanisms by which NO benefits dystrophin-deficient muscle remain unclear, but may involve nNOSß, a newly discovered enzymatic source of NO in skeletal muscle. Here we investigate the impact of dystrophin deficiency on nNOSß and use mdx mice engineered to lack nNOSµ and nNOSß to discern how the loss of nNOS impacts dystrophic skeletal muscle pathology. In mdx muscle, nNOSß was mislocalized and its association with the Golgi complex was reduced. nNOS depletion from mdx mice prevented compensatory skeletal muscle cell hypertrophy, decreased myofiber central nucleation and increased focal macrophage cell infiltration, indicating exacerbated dystrophic muscle damage. Reductions in muscle integrity in nNOS-null mdx mice were accompanied by decreases in specific force and increased susceptibility to eccentric contraction-induced muscle damage compared with mdx controls. Unexpectedly, muscle fatigue was unaffected by nNOS depletion, revealing a novel latent compensatory mechanism for the loss of nNOS in mdx mice. Together with previous studies, these data suggest that localization of both nNOSµ and nNOSß is disrupted by dystrophin deficiency. They also indicate that nNOS has a more complex role as a modifier of dystrophic pathology and broader therapeutic potential than previously recognized. Importantly, these findings also suggest nNOSß as a new drug target and provide a new conceptual framework for understanding nNOS signaling and the benefits of NO therapies in dystrophinopathies.


Assuntos
Contração Muscular , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/imunologia , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Distrofina/genética , Distrofina/metabolismo , Complexo de Golgi/enzimologia , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/enzimologia , Músculo Esquelético/imunologia , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , Óxido Nítrico Sintase Tipo I/genética
9.
J Physiol ; 594(24): 7215-7227, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27570057

RESUMO

KEY POINTS: Duchenne muscular dystrophy (DMD) is a severe, degenerative muscle disease that is commonly studied using the mdx mouse. The mdx diaphragm muscle closely mimics the pathophysiological changes in DMD muscles. mdx diaphragm force is commonly assessed ex vivo, precluding time course studies. Here we used ultrasonography to evaluate time-dependent changes in diaphragm function in vivo, by measuring diaphragm movement amplitude. In mdx mice, diaphragm amplitude decreased with age and values were much lower than for wild-type mice. Importantly, diaphragm amplitude strongly correlated with ex vivo specific force values. Micro-dystrophin administration increased mdx diaphragm amplitude by 26% after 4 weeks. Diaphragm amplitude correlated positively with ex vivo force values and negatively with diaphragm fibrosis, a major cause of DMD muscle weakness. These studies validate diaphragm ultrasonography as a reliable technique for assessing time-dependent changes in mdx diaphragm function in vivo. This technique will be valuable for testing potential therapies for DMD. ABSTRACT: Duchenne muscular dystrophy (DMD) is a severe, degenerative muscle disease caused by dystrophin mutations. The mdx mouse is a widely used animal model of DMD. The mdx diaphragm muscle most closely recapitulates key features of DMD muscles, including progressive fibrosis and considerable force loss. Diaphragm function in mdx mice is commonly evaluated by specific force measurements ex vivo. While useful, this method only measures force from a small muscle sample at one time point. Therefore, accurate assessment of diaphragm function in vivo would provide an important advance to study the time course of functional decline and treatment benefits. Here, we evaluated an ultrasonography technique for measuring time-dependent changes of diaphragm function in mdx mice. Diaphragm movement amplitude values for mdx mice were considerably lower than those for wild-type, decreased from 8 to 18 months of age, and correlated strongly with ex vivo specific force. We then investigated the time course of diaphragm amplitude changes following administration of an adeno-associated viral vector expressing Flag-micro-dystrophin (AAV-µDys) to young adult mdx mice. Diaphragm amplitude peaked 4 weeks after AAV-µDys administration, and was 26% greater than control mdx mice at this time. This value decreased slightly to 21% above mdx controls after 12 weeks of treatment. Importantly, diaphragm amplitude again correlated strongly with ex vivo specific force. Also, diaphragm amplitude and specific force negatively correlated with fibrosis levels in the muscle. Together, our results validate diaphragm ultrasonography as a reliable technique for assessing time-dependent changes in dystrophic diaphragm function in vivo, and for evaluating potential therapies for DMD.


Assuntos
Diafragma/diagnóstico por imagem , Diafragma/fisiopatologia , Distrofia Muscular Animal/diagnóstico por imagem , Distrofia Muscular Animal/fisiopatologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/fisiopatologia , Reprodutibilidade dos Testes , Ultrassonografia
10.
Biochim Biophys Acta ; 1851(5): 527-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25625330

RESUMO

The syntrophins alpha (SNTA) and beta 2 (SNTB2) are molecular adaptor proteins shown to stabilize ABCA1, an essential regulator of HDL cholesterol. Furthermore, SNTB2 is involved in glucose stimulated insulin release. Hyperglycemia and dyslipidemia are characteristic features of the metabolic syndrome, a serious public health problem with rising prevalence. Therefore, it is important to understand the role of the syntrophins herein. Mice deficient for both syntrophins (SNTA/B2-/-) have normal insulin and glucose tolerance, hepatic ABCA1 protein and cholesterol. When challenged with a HFD, wild type and SNTA/B2-/- mice have similar weight gain, adiposity, serum and liver triglycerides. Hepatic ABCA1, serum insulin and insulin sensitivity are normal while glucose tolerance is impaired. Liver cholesterol is reduced, and expression of SREBP2 and HMG-CoA-R is increased in the knockout mice. Scavenger receptor-BI (SR-BI) protein is strongly diminished in the liver of SNTA/B2-/- mice while SR-BI binding protein NHERF1 is not changed and PDZK1 is even induced. Knock-down of SNTA, SNTB2 or both has no effect on hepatocyte SR-BI and PDZK1 proteins. Further, SR-BI levels are not reduced in brown adipose tissue of SNTA/B2-/- mice excluding that syntrophins directly stabilize SR-BI. SR-BI stability is regulated by MAPK and phosphorylated ERK2 is induced in the liver of the knock-out mice. Blockage of ERK activity upregulates hepatocyte SR-BI showing that increased MAPK activity contributes to low SR-BI. Sphingomyelin which is well described to regulate cholesterol metabolism is reduced in the liver and serum of the knock-out mice while the size of serum lipoproteins is not affected. Current data exclude a major function of these syntrophins in ABCA1 activity and insulin release but suggest a role in regulating glucose uptake, ERK and SR-BI levels, and sphingomyelin metabolism in obesity.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Dieta Hiperlipídica , Proteínas Associadas à Distrofina/deficiência , Lipídeos/sangue , Fígado/metabolismo , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Adiposidade , Animais , Glicemia/metabolismo , Linhagem Celular Tumoral , Colesterol/sangue , Modelos Animais de Doenças , Proteínas Associadas à Distrofina/genética , Ativação Enzimática , Genótipo , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Insulina/sangue , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Obesidade/sangue , Obesidade/genética , Obesidade/fisiopatologia , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Receptores Depuradores Classe B/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Esfingomielinas/sangue , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Triglicerídeos/sangue , Aumento de Peso
11.
Anal Biochem ; 484: 99-101, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26079703

RESUMO

Alpha-syntrophin (SNTA) is an adaptor protein that regulates several signaling pathways. To analyze expression of SNTA immunoblot assays must be performed. Here, the specificity of four commercially available SNTA antibodies has been evaluated in immunoblot experiments using liver tissues of wild-type and SNTA-deficient mice. While one of the antibodies reacts with SNTA, two antibodies specifically recognize beta 2 syntrophin (SNTB2). The antigen detected by the fourth antibody has not been identified but is different from SNTA and SNTB2. Therefore, only one of the four tested antibodies is appropriate to analyze SNTA protein levels by immunoblot.


Assuntos
Especificidade de Anticorpos , Proteínas de Ligação ao Cálcio/imunologia , Immunoblotting , Proteínas de Membrana/imunologia , Proteínas Musculares/imunologia , Animais , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Fígado/citologia , Fígado/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Musculares/deficiência , Proteínas Musculares/metabolismo
12.
J Neurochem ; 125(2): 247-59, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23346911

RESUMO

α-Syntrophin is a component of the dystrophin scaffold-protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α-Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K(+) homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4-mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [(14)C]metabolites during sensory stimulation. Conscious KO and wild-type mice were pulse-labeled with [6-(14)C] glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer-assisted brain imaging or analysis of [(14)C]metabolites in extracts, respectively. High-resolution autoradiographic assays detected a 17% side-to-side difference (p < 0.05) in inferior colliculus of KO mice, not wild-type mice. However, there were no labeling differences between KO and wild-type mice for five major HPLC fractions from four dissected regions, presumably because of insufficient anatomical resolution. The results suggest a role for AQP4-mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes.


Assuntos
Aquaporina 4/metabolismo , Encéfalo/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Glucose/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Estimulação Acústica , Animais , Autorradiografia , Proteínas de Ligação ao Cálcio/deficiência , Radioisótopos de Carbono , Cromatografia Líquida de Alta Pressão , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/deficiência , Estimulação Física
13.
Exp Mol Pathol ; 95(2): 180-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23860432

RESUMO

Adiponectin receptor 1 (AdipoR1) is one of the two signaling receptors of adiponectin with multiple beneficial effects in metabolic diseases. AdipoR1 C-terminal peptide is concordant with the consensus sequence of class I PSD-95, disc large, ZO-1 (PDZ) proteins, and screening of a liver yeast two hybrid library identified binding to ß2-syntrophin (SNTB2). Hybridization of a PDZ-domain array with AdipoR1 C-terminal peptide shows association with PDZ-domains of further proteins including ß1- and α-syntrophin (SNTA). Interaction of PDZ proteins and C-terminal peptides requires a free carboxy terminus next to the PDZ-binding region and is blocked by carboxy terminal added tags. N-terminal tagged AdipoR1 is more highly expressed than C-terminal tagged receptor suggesting that the free carboxy terminus may form a complex with PDZ proteins to regulate cellular AdipoR1 levels. The C- and N-terminal tagged AdipoR1 proteins are mainly localized in the cytoplasma. N-terminal but not C-terminal tagged AdipoR1 colocalizes with syntrophins in adiponectin incubated Huh7 cells. Adiponectin induced hepatic phosphorylation of AMPK and p38 MAPK which are targets of AdipoR1 is, however, not blocked in SNTA and SNTB2 deficient mice. Further, AdipoR1 protein is similarly abundant in the liver of knock-out and wild type mice when kept on a standard chow or a high fat diet. In summary these data suggest that AdipoR1 protein levels are regulated by so far uncharacterized class I PDZ proteins which are distinct from SNTA and SNTB2.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Hepatócitos/metabolismo , Domínios PDZ , Receptores de Adiponectina/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular , Proteínas Associadas à Distrofina/química , Ativação Enzimática/fisiologia , Imunofluorescência , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases/metabolismo , Receptores de Adiponectina/química , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
J Pathol ; 228(1): 77-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22653783

RESUMO

Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy caused by mutations in the dystrophin gene. Loss of dystrophin initiates a progressive decline in skeletal muscle integrity and contractile capacity which weakens respiratory muscles including the diaphragm, culminating in respiratory failure, the leading cause of morbidity and mortality in DMD patients. At present, corticosteroid treatment is the primary pharmacological intervention in DMD, but has limited efficacy and adverse side effects. Thus, there is an urgent need for new safe, cost-effective, and rapidly implementable treatments that slow disease progression. One promising new approach is the amplification of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signalling pathways with phosphodiesterase 5 (PDE5) inhibitors. PDE5 inhibitors serve to amplify NO signalling that is attenuated in many neuromuscular diseases including DMD. We report here that a 14-week treatment of the mdx mouse model of DMD with the PDE5 inhibitor sildenafil (Viagra(®), Revatio(®)) significantly reduced mdx diaphragm muscle weakness without impacting fatigue resistance. In addition to enhancing respiratory muscle contractility, sildenafil also promoted normal extracellular matrix organization. PDE5 inhibition slowed the establishment of mdx diaphragm fibrosis and reduced matrix metalloproteinase-13 (MMP-13) expression. Sildenafil also normalized the expression of the pro-fibrotic (and pro-inflammatory) cytokine tumour necrosis factor α (TNFα). Sildenafil-treated mdx diaphragms accumulated significantly less Evans Blue tracer dye than untreated controls, which is also indicative of improved diaphragm muscle health. We conclude that sildenafil-mediated PDE5 inhibition significantly reduces diaphragm respiratory muscle dysfunction and pathology in the mdx mouse model of Duchenne muscular dystrophy. This study provides new insights into the therapeutic utility of targeting defects in NO-cGMP signalling with PDE5 inhibitors in dystrophin-deficient muscle.


Assuntos
Diafragma/efeitos dos fármacos , Fibrose/tratamento farmacológico , Debilidade Muscular/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Sulfonas/farmacologia , Animais , Creatina Quinase/sangue , GMP Cíclico/metabolismo , Diafragma/metabolismo , Diafragma/patologia , Modelos Animais de Doenças , Azul Evans/metabolismo , Fibrose/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Fadiga Muscular/fisiologia , Debilidade Muscular/etiologia , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/patologia , Óxido Nítrico/metabolismo , Purinas/farmacologia , Citrato de Sildenafila
15.
Nat Med ; 12(7): 787-9, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16819550

RESUMO

Mice carrying mutations in both the dystrophin and utrophin genes die prematurely as a consequence of severe muscular dystrophy. Here, we show that intravascular administration of recombinant adeno-associated viral (rAAV) vectors carrying a microdystrophin gene restores expression of dystrophin in the respiratory, cardiac and limb musculature of these mice, considerably reducing skeletal muscle pathology and extending lifespan. These findings suggest rAAV vector-mediated systemic gene transfer may be useful for treatment of serious neuromuscular disorders such as Duchenne muscular dystrophy.


Assuntos
Dependovirus/genética , Distrofina/genética , Técnicas de Transferência de Genes , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/terapia , Músculos Respiratórios/fisiopatologia , Animais , Distrofina/uso terapêutico , Vetores Genéticos , Longevidade , Camundongos , Fibras Musculares Esqueléticas/fisiologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia
16.
Proc Natl Acad Sci U S A ; 107(44): 19079-83, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20956307

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive and fatal genetic disorder of muscle degeneration. Patients with DMD lack expression of the protein dystrophin as a result of mutations in the X-linked dystrophin gene. The loss of dystrophin leads to severe skeletal muscle pathologies as well as cardiomyopathy, which manifests as congestive heart failure and arrhythmias. Like humans, dystrophin-deficient mice (mdx mice) show cardiac dysfunction as evidenced by a decrease in diastolic function followed by systolic dysfunction later in life. We have investigated whether sildenafil citrate (Viagra), a phosphodiesterase 5 (PDE5) inhibitor, can be used to ameliorate the age-related cardiac dysfunction present in the mdx mice. By using echocardiography, we show that chronic sildenafil treatment reduces functional deficits in the cardiac performance of aged mdx mice, with no effect on normal cardiac function in WT controls. More importantly, when sildenafil treatment was started after cardiomyopathy had developed, the established symptoms were rapidly reversed within a few days. It is recognized that PDE5 inhibitors can have cardioprotective effects in other models of cardiac damage, but the present study reports a prevention and reversal of pathological cardiac dysfunction as measured by functional analysis in a mouse model of DMD. Overall, the data suggest that PDE5 inhibitors may be a useful treatment for the cardiomyopathy affecting patients with DMD at early and late stages of the disease.


Assuntos
Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Inibidores da Fosfodiesterase 5/farmacologia , Piperazinas/farmacologia , Sulfonas/farmacologia , Animais , Cardiomiopatias/enzimologia , Cardiomiopatias/etiologia , Cardiomiopatias/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Modelos Animais de Doenças , Distrofina/genética , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/enzimologia , Distrofia Muscular de Duchenne/genética , Purinas/farmacologia , Citrato de Sildenafila
17.
J Neurosci ; 31(43): 15586-96, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031904

RESUMO

α-Syntrophin (α-syn), a scaffold protein, links signaling molecules to the dystrophin-glycoprotein complex. Absence of α-syn from the DGC is known to lead to structurally aberrant neuromuscular junctions (NMJs) with few acetylcholine receptors (AChRs) clustered at synaptic sites. Using α-syn knock-out mice, we show that during the first postnatal week, α-syn is not required for synapse formation. However, at postnatal day 6 (P6)-P7, the structural integrity of the postsynaptic apparatus is altered, the turnover rate of AChRs increases significantly, and the number/density of AChRs is impaired. At the adult α-syn(-/-) NMJ, the turnover rate of AChRs is ∼ 4 times faster than wild-type synapses, and most removed receptors are targeted to degradation as few AChRs recycled to synaptic sites. Biochemical analyses show that in muscle cells of adult knock-out α-syn mice, total AChRs and scaffold protein rapsyn are significantly reduced, the 89 kDa and 75 kDa isoforms of tyrosine phosphorylated α-dystrobrevin (α-dbn) 1 (which are required for the maintenance and stability of AChR in α-dbn(-/-) synapses) are barely detectable. Electroporation of GFP-α-dbn1 in α-syn(-/-) muscle cells partially restored receptor density, turnover rate, and the structural integrity of the postsynaptic apparatus, whereas expression of rapsyn-GFP failed to rescue the α-syn(-/-) synaptic phenotype. These results demonstrate that α-syn is required for the maturation and stability of the postsynaptic apparatus and suggest that α-syn may act via α-dbn1.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Membrana/deficiência , Proteínas Musculares/deficiência , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/metabolismo , Receptores Nicotínicos/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Bungarotoxinas/farmacocinética , Eletroporação/métodos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hidrazinas/farmacocinética , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Junção Neuromuscular/efeitos dos fármacos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Transporte Proteico/genética , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética
18.
Glia ; 60(3): 432-40, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22131281

RESUMO

Expression of the water channel aquaporin-4 (AQP4) at the blood-brain interface is dependent upon the dystrophin associated protein complex. Here we investigated whether deletion of the Aqp4 gene affects the molecular composition of this protein scaffold and the integrity of the blood-brain barrier. High-resolution immunogold cytochemistry revealed that perivascular expression of α-syntrophin was reduced by 60% in Aqp4(-/-) mice. Additionally, perivascular AQP4 expression was reduced by 88% in α-syn(-/-) mice, in accordance with earlier reports. Immunofluorescence showed that Aqp4 deletion also caused a modest reduction in perivascular dystrophin, whereas ß-dystroglycan labeling was unaltered. Perivascular microglia were devoid of AQP4 immunoreactivity. Deletion of Aqp4 did not alter the ultrastructure of capillary endothelial cells, the expression of tight junction proteins (claudin-5, occludin, and zonula occludens 1), or the vascular permeability to horseradish peroxidase and Evans blue albumin dye. We conclude that Aqp4 deletion reduces the expression of perivascular glial scaffolding proteins without affecting the endothelial barrier. Our data also indicate that AQP4 and α-syntrophin are mutually dependent upon each other for proper perivascular expression.


Assuntos
Aquaporina 4/deficiência , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/metabolismo , Endotélio/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/metabolismo , Animais , Aquaporina 4/genética , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/ultraestrutura , Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade Capilar/genética , Córtex Cerebral/citologia , Endotélio/ultraestrutura , Azul Evans , Regulação da Expressão Gênica/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microscopia Imunoeletrônica , Proteínas Musculares/metabolismo , Neuroglia/ultraestrutura , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
19.
Exp Cell Res ; 317(20): 2914-24, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-22001117

RESUMO

Syntrophins are adaptor proteins that link intracellular signaling molecules to the dystrophin based scaffold. In this study, we investigated the function of syntrophins in cell migration, one of the early steps in myogenic differentiation and in regeneration of adult muscle. Hepatocyte growth factor (HGF) stimulates migration and lamellipodia formation in cultured C2 myoblasts. In the migrating cells, syntrophin concentrated in the rear-lateral region of the cell, opposite of the lamellipodia, instead of being diffusely present throughout the cytoplasm of non-migrating cells. When the expression of α-syntrophin, the major syntrophin isoform of skeletal muscle, was reduced by transfection with the α-syntrophin-specific siRNA, HGF stimulation of lamellipodia formation was prevented. Likewise, migration of myoblasts from α-syntrophin knockout mice could not be stimulated by HGF. However, HGF-induced migration was restored in myoblasts isolated from a transgenic mouse expressing α-syntrophin only in muscle cells. Treatment of C2 myoblasts with inhibitors of PI3-kinase not only reduced the rate of cell migration, but also impaired the accumulation of syntrophins in the rear-lateral region of the migrating cells. Phosphorylation of Akt was reduced in the α-syntrophin siRNA-treated C2 cells. These results suggest that α-syntrophin is required for HGF-induced migration of myoblasts and for proper PI3-kinase/Akt signaling.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular/fisiologia , Fator de Crescimento de Hepatócito/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Mioblastos/citologia , Animais , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Musculares/metabolismo , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/genética , Isoformas de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pseudópodes/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais
20.
J Neurosci ; 30(33): 11004-10, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20720107

RESUMO

At the neuromuscular junction (NMJ), the dystrophin protein complex provides a scaffold that functions to stabilize acetylcholine receptor (AChR) clusters. Syntrophin, a key component of that scaffold, is a multidomain adapter protein that links a variety of signaling proteins and ion channels to the dystrophin protein complex. Without syntrophin, utrophin and neuronal nitric oxide synthase mu (nNOSmu) fail to localize to the NMJ and the AChRs are distributed abnormally. Here we investigate the contribution of syntrophin domains to AChR distribution and to localization of utrophin and nNOSmu at the NMJ. Transgenic mice expressing alpha-syntrophin lacking portions of the first pleckstrin homology (PH) domain (DeltaPH1a or DeltaPH1b) or the entire PDZ domain (DeltaPDZ) were bred onto the alpha-syntrophin null background. As expected the DeltaPDZ transgene did not restore the NMJ localization of nNOS. The DeltaPH1a transgene did restore postsynaptic nNOS but surprisingly did not restore sarcolemmal nNOS (although sarcolemmal aquaporin-4 was restored). Mice lacking the alpha-syntrophin PDZ domain or either half of the PH1 domain were able to restore utrophin to the NMJ but did not correct the aberrant AChR distribution of the alpha-syntrophin knock-out mice. However, mice expressing both the transgenic DeltaPDZ and the transgenic DeltaPH1a constructs did restore normal AChR distribution, demonstrating that both domains are required but need not be confined within the same protein to function. We conclude that the PH1 and PDZ domains of alpha-syntrophin work in concert to facilitate the localization of AChRs and nNOS at the NMJ.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Junção Neuromuscular/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Receptores Colinérgicos/metabolismo , Utrofina/metabolismo , Animais , Aquaporina 4/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Domínios PDZ , RNA Mensageiro/metabolismo , Sarcolema/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA