Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 290(31): 19273-86, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26060252

RESUMO

Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3-1.7 and 4.0-5.4 µM, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity.


Assuntos
Antibacterianos/química , Gentamicinas/química , Canamicina/química , RNA Ribossômico/química , RNA/química , Escherichia coli , Humanos , Sequências Repetidas Invertidas , Estabilidade de RNA , RNA Bacteriano/química , RNA Mitocondrial
2.
J Biol Chem ; 290(47): 28141-28155, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438824

RESUMO

Secretion of effector proteins into the eukaryotic host cell is required for Chlamydia trachomatis virulence. In the infection process, Scc1 and Scc4, two chaperones of the type III secretion (T3S) system, facilitate secretion of the important effector and plug protein, CopN, but little is known about the details of this event. Here we use biochemistry, mass spectrometry, nuclear magnetic resonance spectroscopy, and genetic analyses to characterize this trimolecular event. We find that Scc4 complexes with Scc1 and CopN in situ at the late developmental cycle of C. trachomatis. We show that Scc4 and Scc1 undergo dynamic interactions as part of the unique bacterial developmental cycle. Using alanine substitutions, we identify several amino acid residues in Scc4 that are critical for the Scc4-Scc1 interaction, which is required for forming the Scc4·Scc1·CopN ternary complex. These results, combined with our previous findings that Scc4 plays a role in transcription (Rao, X., Deighan, P., Hua, Z., Hu, X., Wang, J., Luo, M., Wang, J., Liang, Y., Zhong, G., Hochschild, A., and Shen, L. (2009) Genes Dev. 23, 1818-1829), reveal that the T3S process is linked to bacterial transcriptional events, all of which are mediated by Scc4 and its interacting proteins. A model describing how the T3S process may affect gene expression is proposed.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Chaperonas Moleculares/metabolismo , Escherichia coli/metabolismo , Células HeLa , Humanos , Solubilidade
3.
J Bacteriol ; 195(16): 3752-60, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23772074

RESUMO

Rickettsia prowazekii is an obligate intracytosolic pathogen and the causative agent of epidemic typhus fever in humans. As an evolutionary model of intracellular pathogenesis, rickettsiae are notorious for their use of transport systems that parasitize eukaryotic host cell biochemical pathways. Rickettsial transport systems for substrates found only in eukaryotic cell cytoplasm are uncommon among free-living microorganisms and often possess distinctive mechanisms. We previously reported that R. prowazekii acquires triose phosphates for phospholipid biosynthesis via the coordinated activities of a novel dihydroxyacetone phosphate transport system and an sn-glycerol-3-phosphate dehydrogenase (K. M. Frohlich et al., J. Bacteriol. 192:4281-4288, 2010). In the present study, we have determined that R. prowazekii utilizes a second, independent triose phosphate acquisition pathway whereby sn-glycerol-3-phosphate is directly transported and incorporated into phospholipids. Herein we describe the sn-glycerol-3-phosphate and dihydroxyacetone phosphate transport systems in isolated R. prowazekii with respect to kinetics, energy coupling, transport mechanisms, and substrate specificity. These data suggest the existence of multiple rickettsial triose phosphate transport systems. Furthermore, the R. prowazekii dihydroxyacetone phosphate transport systems displayed unexpected mechanistic properties compared to well-characterized triose phosphate transport systems from plant plastids. Questions regarding possible roles for dual-substrate acquisition pathways as metabolic virulence factors in the context of a pathogen undergoing reductive evolution are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fosfatos/metabolismo , Rickettsia prowazekii/metabolismo , Trioses/metabolismo , Proteínas de Bactérias/genética , Transporte Biológico Ativo/fisiologia , Fosfatos/química , Rickettsia prowazekii/genética , Especificidade por Substrato , Trioses/química
4.
Microbiology (Reading) ; 157(Pt 10): 2759-2771, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737500

RESUMO

Chlamydia trachomatis is the most common bacterial infection of the human reproductive tract globally; however, the mechanisms underlying the adaptation of the organism to its natural target cells, human endocervical epithelial cells, are not clearly understood. To secure its intracellular niche, C. trachomatis must modulate the host cellular machinery by secreting virulence factors into the host cytosol to facilitate bacterial growth and survival. Here we used primary human endocervical epithelial cells and HeLa cells infected with C. trachomatis to examine the secretion of bacterial proteins during productive growth and persistent growth induced by ampicillin. Specifically, we observed a decrease in secretable chlamydial protease-like activity factor (CPAF) in the cytosol of host epithelial cells exposed to ampicillin with no evident reduction of CPAF product by C. trachomatis. In contrast, the expression of CopN and Tarp was downregulated, suggesting that C. trachomatis responds to ampicillin exposure by selectively altering the expression of secretable proteins. In addition, we observed a greater accumulation of outer-membrane vesicles from C. trachomatis in persistently infected cells. Taken together, these results suggest that the regulation of both gene expression and the secretion of chlamydial virulence proteins is involved in the adaptation of the bacteria to a persistent infection state in human genital epithelial cells.


Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/metabolismo , Endopeptidases/metabolismo , Células Epiteliais/microbiologia , Doenças do Colo do Útero/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Colo do Útero/citologia , Colo do Útero/microbiologia , Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/genética , Regulação para Baixo , Endopeptidases/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Transporte Proteico
5.
J Bacteriol ; 192(17): 4281-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20581209

RESUMO

Rickettsia prowazekii is an obligate intracellular pathogen that possesses a small genome and a highly refined repertoire of biochemical pathways compared to those of free-living bacteria. Here we describe a novel biochemical pathway that relies on rickettsial transport of host cytosolic dihydroxyacetone phosphate (DHAP) and its subsequent conversion to sn-glycerol-3-phosphate (G3P) for synthesis of phospholipids. This rickettsial pathway compensates for the evolutionary loss of rickettsial glycolysis/gluconeogenesis, the typical endogenous source of G3P. One of the components of this pathway is R. prowazekii open reading frame RP442, which is annotated GpsA, a G3P dehydrogenase (G3PDH). Purified recombinant rickettsial GpsA was shown to specifically catalyze the conversion of DHAP to G3P in vitro. The products of the GpsA assay were monitored spectrophotometrically, and the identity of the reaction product was verified by paper chromatography. In addition, heterologous expression of the R. prowazekii gpsA gene functioned to complement an Escherichia coli gpsA mutant. Furthermore, gpsA mRNA was detected in R. prowazekii purified from hen egg yolk sacs, and G3PDH activity was assayable in R. prowazekii lysed-cell extracts. Together, these data strongly suggested that R. prowazekii encodes and synthesizes a functional GpsA enzyme, yet R. prowazekii is unable to synthesize DHAP as a substrate for the GpsA enzymatic reaction. On the basis of the fact that intracellular organisms often avail themselves of resources in the host cell cytosol via the activity of novel carrier-mediated transport systems, we reasoned that R. prowazekii transports DHAP to supply substrate for GpsA. In support of this hypothesis, we show that purified R. prowazekii transported and incorporated DHAP into phospholipids, thus implicating a role for GpsA in vivo as part of a novel rickettsial G3P acquisition pathway for phospholipid biosynthesis.


Assuntos
Fosfato de Di-Hidroxiacetona/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Fosfatos/metabolismo , Fosfolipídeos/biossíntese , Rickettsia prowazekii/enzimologia , Trioses/metabolismo , Transporte Biológico , Glicerolfosfato Desidrogenase/genética , Rickettsia prowazekii/crescimento & desenvolvimento , Rickettsia prowazekii/metabolismo
6.
ChemMedChem ; 14(7): 758-769, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30707489

RESUMO

The emergence of multidrug-resistant bacteria necessitates the identification of unique targets of intervention and compounds that inhibit their function. Gram-positive bacteria use a well-conserved tRNA-responsive transcriptional regulatory element in mRNAs, known as the T-box, to regulate the transcription of multiple operons that control amino acid metabolism. T-box regulatory elements are found only in the 5'-untranslated region (UTR) of mRNAs of Gram-positive bacteria, not Gram-negative bacteria or the human host. Using the structure of the 5'UTR sequence of the Bacillus subtilis tyrosyl-tRNA synthetase mRNA T-box as a model, in silico docking of 305 000 small compounds initially yielded 700 as potential binders that could inhibit the binding of the tRNA ligand. A single family of compounds inhibited the growth of Gram-positive bacteria, but not Gram-negative bacteria, including drug-resistant clinical isolates at minimum inhibitory concentrations (MIC 16-64 µg mL-1 ). Resistance developed at an extremely low mutational frequency (1.21×10-10 ). At 4 µg mL-1 , the parent compound PKZ18 significantly inhibited in vivo transcription of glycyl-tRNA synthetase mRNA. PKZ18 also inhibited in vivo translation of the S. aureus threonyl-tRNA synthetase protein. PKZ18 bound to the Specifier Loop in vitro (Kd ≈24 µm). Its core chemistry necessary for antibacterial activity has been identified. These findings support the T-box regulatory mechanism as a new target for antibiotic discovery that may impede the emergence of resistance.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , RNA de Transferência/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Antibacterianos/química , Bactérias Gram-Positivas/genética , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , RNA Mensageiro/genética , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
Pathog Dis ; 73(1): 1-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25854005

RESUMO

Chlamydia trachomatis is the most common sexually transmitted bacterial disease worldwide. Untreated C. trachomatis infections may cause inflammation and ultimately damage tissues. Here, we evaluated the ability of Andrographolide (Andro), a natural diterpenoid lactone component of Andrographis paniculata, to inhibit C. trachomatis infection in cultured human cervical epithelial cells. We found that Andro exposure inhibited C. trachomatis growth in a dose- and time-dependent manner. The greatest inhibitory effect was observed when exponentially growing C. trachomatis was exposed to Andro. Electron micrographs demonstrated the accumulation of unusual, structurally deficient chlamydial organisms, correlated with a decrease in levels of OmcB expressed at the late stage of infection. Additionally, Andro significantly reduced the secretion of interleukin6, CXCL8 and interferon-γ-induced protein10 produced by host cells infected with C. trachomatis. These results indicate the efficacy of Andro to perturb C. trachomatis transition from the metabolically active reticulate body to the infectious elementary body and concurrently reduce the production of a proinflammatory mediator by epithelial cells in vitro. Further dissection of Andro's anti-Chlamydia action may provide identification of novel therapeutic targets.


Assuntos
Antibacterianos/metabolismo , Chlamydia trachomatis/efeitos dos fármacos , Citocinas/antagonistas & inibidores , Diterpenos/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Fatores Imunológicos/metabolismo , Células Cultivadas , Chlamydia trachomatis/crescimento & desenvolvimento , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos
8.
Artigo em Inglês | MEDLINE | ID: mdl-24959424

RESUMO

Bacteria have evolved specific adaptive responses to cope with changing environments. These adaptations include stress response phenotypes with dynamic modifications of the bacterial cell envelope and generation of membrane vesicles (MVs). The obligate intracellular bacterium, Chlamydia trachomatis, typically has a biphasic lifestyle, but can enter into an altered growth state typified by morphologically aberrant chlamydial forms, termed persistent growth forms, when induced by stress in vitro. How C. trachomatis can adapt to a persistent growth state in host epithelial cells in vivo is not well understood, but is an important question, since it extends the host-bacterial relationship in vitro and has thus been indicated as a survival mechanism in chronic chlamydial infections. Here, we review recent findings on the mechanistic aspects of bacterial adaptation to stress with a focus on how C. trachomatis remodels its envelope, produces MVs, and the potential important consequences of MV production with respect to host-pathogen interactions. Emerging data suggest that the generation of MVs may be an important mechanism for C. trachomatis intracellular survival of stress, and thus may aid in the establishment of a chronic infection in human genital epithelial cells.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Chlamydia trachomatis/fisiologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA