RESUMO
Lung cancer is the leading cause of cancer deaths in the world, and accounts for more solid tumor deaths than any other carcinomas. The prognostic values of DMP1, ARF, and p53-loss are unknown in lung cancer. We have conducted survival analyses of non-small cell lung cancer (NSCLC) patients from the University of Minnesota VA hospital and those from the Wake Forest University Hospital. Loss of Heterozygosity (LOH) for hDMP1 was found in 26 of 70 cases (37.1%), that of the ARF/INK4a locus was found in 33 of 70 (47.1%), and that of the p53 locus in 43 cases (61.4%) in the University of Minnesota samples. LOH for hDMP1 was associated with favorable prognosis while that of p53 predicted worse prognosis. The survival was much shorter for ARF-loss than INK4a-loss, emphasizing the importance of ARF in human NSCLC. The adverse effect of p53 LOH on NSCLC patients' survival was neutralized by simultaneous loss of the hDMP1 locus in NSCLC and breast cancer, suggesting the possible therapy of epithelial cancers with metastatic ability.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/mortalidade , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neoplasias Pulmonares/mortalidade , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Humanos , Perda de Heterozigosidade , Neoplasias Pulmonares/genética , Masculino , Prognóstico , Análise de SobrevidaRESUMO
The difficulties in quantitatively modeling the temperature dependence of spin-lattice relaxation in a model isotope-enriched peptide are explored as a prelude to obtaining dynamics parameters for motions in proteins from such measurements. The degree to which this can be handled by adding spin diffusion to a bath in standard rate matrix relaxation theory is studied using a small tri-peptide model system, glycyl-alanyl-leucine (GAL). We observe in this molecule that the relaxation of backbone carbons CO and Cα is not dominated by local fluctuations of the 13C-1H dipolar couplings, but rather by 13C-13C spin diffusion to nearby methyl relaxation sinks. A treatment of the methyl relaxation itself, which ignores 13C-13C spin diffusion effects back to the otherwise slowly relaxing bath, provides poor agreement between theory and experimental data obtained for the temperature dependence of the methyl relaxation rates. Closed form approximate spectral densities and relaxation rates for a methyl group during magic angle spinning are obtained to compute the needed transition rates. These average computed rates, in conjunction with an extended form of the Solomon equations, are found to adequately model the temperature dependence of the methyl relaxation rates when spin diffusion is included. The barrier to rotation for the alanine methyl in GAL is determined to be 3.5 kcal mol-1.
Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Oligopeptídeos/química , Temperatura , Difusão , Cinética , Modelos Biológicos , Movimento (Física)RESUMO
The c-Myb gene encodes a transcription factor that regulates cell proliferation, differentiation, and apoptosis through protein-protein interaction and transcriptional regulation of signaling pathways. The protein is frequently overexpressed in human leukemias, breast cancers, and other solid tumors suggesting that it is a bona fide oncogene. c-MYB is often overexpressed by translocation in human tumors with t(6;7)(q23;q34) resulting in c-MYB-TCRß in T cell ALL, t(X;6)(p11;q23) with c-MYB-GATA1 in acute basophilic leukemia, and t(6;9)(q22-23;p23-24) with c-MYB-NF1B in adenoid cystic carcinoma. Antisense oligonucleotides to c-MYB were developed to purge bone marrow cells to eliminate tumor cells in leukemias. Recently, small molecules that inhibit c-MYB activity have been developed to disrupt its interaction with p300. The Dmp1 (cyclin D binding myb-like protein 1; Dmtf1) gene was isolated through its virtue for binding to cyclin D2. It is a transcription factor that has a Myb-like repeat for DNA binding. The Dmtf1 protein directly binds to the Arf promoter for transactivation and physically interacts with p53 to activate the p53 pathway. The gene is hemizygously deleted in 35-42% of human cancers and is associated with longer survival. The significances of aberrant expression of c-MYB and DMTF1 proteins in human cancers and their clinical significances are discussed.
Assuntos
Fatores de Ribosilação do ADP/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas c-myb/genética , Fatores de Transcrição/genética , Regulação Neoplásica da Expressão Gênica , Hemizigoto , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myb/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Análise de Sobrevida , Fatores de Transcrição/metabolismo , Translocação Genética , Regulação para CimaRESUMO
Recent studies have indicated that EGR1 is a direct regulator of tumor suppressors including TGFß1, PTEN, and p53. The Myb-like transcription factor Dmp1 is a physiological regulator of the Arf-p53 pathway through transactivation of the Arf promoter and physical interaction of p53. The Dmp1 promoter has binding sites for Egr proteins, and Egr1 is a target for Dmp1. Crosstalks between p53 and PTEN have been reported. The Egr1-Dmp1-Arf-p53-Pten pathway displays multiple modes of interaction with each other, suggesting the existence of a functional network of tumor suppressors that maintain normal cell growth and prevent the emergence of incipient cancer cells.
RESUMO
The human c-ErbB2 (HER2) gene is amplified in â¼20% of human breast cancers (BCs), but the protein is overexpressed in â¼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.
Assuntos
Neoplasias da Mama/genética , Carcinogênese/genética , Oncogenes/genética , Receptor ErbB-2/genética , Proteínas Supressoras de Tumor/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos/genéticaRESUMO
We recently reported the existence of a physical interaction between the Myb-like transcription factor Dmp1 (Dmtf1) and p53 in which Dmp1 antagonized polyubiquitination of p53 by Mdm2 and promoted its nuclear localization. Dmp1 significantly stabilized p53-DNA complexes on promoters that contained p53-consensus sequences, which were either supershifted or disrupted with antibodies to Dmp1. Lysates from mice injected with doxorubicin showed that Dmp1 bound to p21Cip1, Bbc3, and Thbs1 gene regulatory regions in a p53-dependent fashion. Our data suggest that acceleration of DNA-binding of p53 by Dmp1 is a critical process for Dmp1 to increase the p53 function in Arf-deficient cells.
Assuntos
Núcleo Celular/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Núcleo Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Doxorrubicina/farmacologia , Genótipo , Humanos , Camundongos , Camundongos Knockout , Células NIH 3T3 , Fenótipo , Regiões Promotoras Genéticas , Ligação Proteica , Trombospondina 1/genética , Trombospondina 1/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Alternative splicing (AS) of mRNA precursors is a ubiquitous mechanism for generating numerous transcripts with different activities from one genomic locus in mammalian cells. The gene products from a single locus can thus have similar, dominant-negative or even opposing functions. Aberrant AS has been found in cancer to express proteins that promote cell growth, local invasion and metastasis. This review will focus on the aberrant splicing of tumor suppressor/oncogenes that belong to the DMP1-ARF-MDM2-p53 pathway. Our recent study shows that the DMP1 locus generates both tumor-suppressive DMP1α (p53-dependent) and oncogenic DMP1ß (p53-independent) splice variants, and the DMP1ß/α ratio increases with neoplastic transformation of breast epithelial cells. This process is associated with high DMP1ß protein expression and shorter survival of breast cancer (BC) patients. Accumulating pieces of evidence show that ARF is frequently inactivated by aberrant splicing in human cancers, demonstrating its involvement in human malignancies. Splice variants from the MDM2 locus promote cell growth in culture and accelerate tumorigenesis in vivo. Human cancers expressing these splice variants are associated with advanced stage/metastasis, and thus have negative clinical impacts. Although they lack most of the p53-binding domain, their activities are mostly dependent on p53 since they bind to wild-type MDM2. The p53 locus produces splice isoforms that have either favorable (ß/γ at the C-terminus) or negative impact (Δ40, Δ133 at the N-terminus) on patients' survival. As the oncogenic AS products from these loci are expressed only in cancer cells, they may eventually become targets for molecular therapies.
Assuntos
Processamento Alternativo/genética , Neoplasias da Mama/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Proteínas da Matriz Extracelular/genética , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Inibidor p16 de Quinase Dependente de Ciclina/biossíntese , Proteínas da Matriz Extracelular/biossíntese , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fosfoproteínas/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Transdução de Sinais , Proteína Supressora de Tumor p53/biossínteseRESUMO
The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression.
Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Carcinogênese/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Ativação Transcricional/fisiologiaRESUMO
Our recent work has indicated that the DMP1 locus on 7q21, encoding a haplo-insufficient tumour suppressor, is hemizygously deleted at a high frequency in breast cancer. The locus encodes DMP1α protein, an activator of the p53 pathway leading to cell cycle arrest and senescence, and two other functionally undefined isoforms, DMP1ß and DMP1γ. In this study, we show that the DMP1 locus is alternatively spliced in â¼30% of breast cancer cases with relatively decreased DMP1α and increased DMP1ß expression. RNA-seq analyses of a publicly available database showed significantly increased DMP1ß mRNA in 43-55% of human breast cancers, dependent on histological subtypes. Similarly, DMP1ß protein was found to be overexpressed in â¼60% of tumours relative to their surrounding normal tissue. Importantly, alteration of DMP1 splicing and DMP1ß overexpression were associated with poor clinical outcomes of the breast cancer patients, indicating that DMP1ß may have a biological function. Indeed, DMP1ß increased proliferation of non-tumourigenic mammary epithelial cells and knockdown of endogenous DMP1 inhibited breast cancer cell growth. To determine DMP1ß's role in vivo, we established MMTV-DMP1ß transgenic mouse lines. DMP1ß overexpression was sufficient to induce mammary gland hyperplasia and multifocal tumour lesions in mice at 7-18 months of age. The tumours formed were adenosquamous carcinomas with evidence of transdifferentiation and keratinized deposits. Overall, we identify alternative splicing as a mechanism utilized by cancer cells to modulate the DMP1 locus through diminishing DMP1α tumour suppressor expression, while simultaneously up-regulating the tumour-promoting DMP1ß isoform.
Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Progressão da Doença , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Glândulas Mamárias Humanas/patologia , Camundongos Transgênicos , Fosfoproteínas/genética , Fatores de Transcrição/genéticaRESUMO
p53 and its related genes, p63 and p73 constitute the p53 gene family. While p53 is the most frequently mutated gene in human tumors, p63 and p73 are rarely mutated or deleted in cancers. Many studies have reported p63/p73 overexpression in human cancers while others showed that a loss of p63/p73 is associated with tumor progression and metastasis. Thus, whether p63 or p73 is a tumor suppressor gene or an oncogene has been a matter of debate. This controversy has been attributed to the existence of multiple splicing isoforms with distinct functions; the full-length TA isoform of p63 has structural and functional similarity to wild-type p53, whereas the ΔNp63 acts primarily in dominant-negative fashion against all family members of p53. Differential activities of TA and ΔN isoforms have been shown in vivo by creating isform-specific gene knockout mice. All p53, p63, p73 proteins bind to and activate target genes with p53-response elements; p63 also binds to distinct p63-response elements and regulate expression of specific target genes involved in skin, limb, and craniofacial development. Interestingly, several studies have shown that both p63 and p73 are involved in cellular response to cancer therapy and others have indicated that both of these molecules are required for p53-induced apoptosis, suggesting functional interplay among p53 family proteins. Consistent with these findings, aberrant splicing that result in ΔNp63 or ΔNp73 overexpression are frequently found in human cancers, and is associated with poor clinical outcomes of patients in the latter. Thus immunohistochemical staining of tumor specimen with ΔNp73-specific antibody might have diagnostic values in cancer clinics.
Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Membrana/genética , Neoplasias/genética , Proteínas Nucleares/genética , Proteínas Supressoras de Tumor/genética , Animais , Humanos , Camundongos , Camundongos Knockout , Splicing de RNA , Transcrição Gênica , Proteína Tumoral p73RESUMO
Cyclin D1 is a component of the core cell-cycle machinery and is frequently overexpressed in breast cancer. It physically interacts with the tumor suppressor Dmp1 that attenuates the oncogenic signals from Ras and HER2 by inducing Arf/p53-dependent cell-cycle arrest. Currently, the biological significance of Dmp1-cyclin D1 interplay in breast cancer has not been determined. Here, we show that cyclin D1 bound to Dmp1 to activate both Arf and Ink4a promoters and, consequently, induced apoptosis or G2/M cell-cycle delay in normal cells to protect them from neoplastic transformation. The cyclin D1-induced Ink4a/Arf gene expression was dependent on Dmp1 because the induction was not detected in Dmp1-deficient or DMP1-depleted cells. Arf/Ink4a expression was increased in pre-malignant mammary glands from Dmp1(+/+);MMTV-cyclin D1 and Dmp1(+/+);MMTV-D1T286A mice but significantly down-regulated in those from Dmp1-deficient mice. Selective Dmp1 deletion was found in 21% of the MMTV-D1 and D1T286A mammary carcinomas, and the Dmp1 heterozygous status significantly accelerated mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Overall, our study reveals a pivotal role of combined Dmp1 loss and cyclin D1 overexpression in breast cancer.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclina D1/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Fatores de Transcrição/deficiência , Animais , Apoptose , Neoplasias da Mama/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fase G2 , Regulação Neoplásica da Expressão Gênica , Humanos , Vírus do Tumor Mamário do Camundongo/fisiologia , Camundongos , Camundongos Transgênicos , Mitose , Mutação/genética , Metástase Neoplásica , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismoRESUMO
A surprisingly strong spin rate dependence of (15)N and (13)C NMR T(1) times in magic angle spinning experiments on solid peptides is demonstrated. Using a variety of isotopomers, the phenomenon is shown to be the result of chemical shift anisotropy-mediated spin diffusion. This effect has the potential to be used to detect long-range distance constraints in macromolecular systems.
Assuntos
Espectroscopia de Ressonância Magnética/métodos , Anisotropia , Difusão , CinéticaRESUMO
p53 mutations with single amino acid changes in cancer often lead to dominant oncogenic changes. Here, we have developed a mouse model of gain-of-function (GOF) p53-driven lung cancer utilizing conditionally active LSL p53-R172H and LSL K-Ras-G12D knock-in alleles that can be activated by Cre in lung club cells. Mutation of the p53 transactivation domain (TAD) (p53-L25Q/W26S/R172H) eliminating significant transactivation activity resulted in loss of tumorigenicity, demonstrating that transactivation mediated by or dependent on TAD is required for oncogenicity by GOF p53. GOF p53 TAD mutations significantly reduce phosphorylation of nearby p53 serine 20 (S20), which is a target for PLK3 phosphorylation. Knocking out PLK3 attenuated S20 phosphorylation along with transactivation and oncogenicity by GOF p53, indicating that GOF p53 exploits PLK3 to trigger its transactivation capability and exert oncogenic functions. Our data show a mechanistic involvement of PLK3 in mutant p53 pathway of oncogenesis.
Assuntos
Carcinogênese/genética , Neoplasias Pulmonares/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Humanos , Pulmão/patologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Fosforilação/genética , Domínios Proteicos/genética , Proteínas Serina-Treonina Quinases/genética , Serina/metabolismo , Esferoides Celulares , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de TumorRESUMO
The ARF and INK4a genes are located on the CDKN2a locus, both showing tumor suppressive activity. ARF has been shown to monitor potentially harmful oncogenic signalings, making early stage cancer cells undergo senescence or programmed cell death to prevent cancer. Conversely, INK4a detects both aging and incipient cancer cell signals, and thus these two gene functions are different. The efficiency of detection of oncogenic signals is more efficient for the for the former than the latter in the mouse system. Both ARF and INK4a genes are inactivated by gene deletion, promoter methylation, frame shift, aberrant splicing although point mutations for the coding region affect only the latter. Recent studies show the splicing alterations that affect only ARF or both ARF and INK4a genes suggesting that ARF is inactivated in human tumors more frequently than what was previously thought. The ARF gene is activated by E2Fs and Dmp1 transcription factors while it is repressed by Bmi1, Tbx2/3, Twist1, and Pokemon nuclear proteins. It is also regulated at protein levels by Arf ubiquitin ligase named ULF, MKRN1, and Siva1. The prognostic value of ARF overexpression is controversial since it is induced in early stage cancer cells to eliminate pre-malignant cells (better prognosis); however, it may also indicate that the tumor cells have mutant p53 associated with worse prognosis. The ARF tumor suppressive protein can be used as a biomarker to detect early stage cancer cells as well as advanced stage tumors with p53 inactivation.
RESUMO
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating certain gene transcriptions. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. Three chimeric genes involving ETS genes have been identified in human cancers, which are EWS-FLI1 in Ewing's sarcoma, TMPRSS2-ERG in prostate cancer, and ETV6-RUNX1 in acute lymphocytic leukemia. Although these fusion transcripts definitely contribute to the pathogenesis of the disease, the impact of these fusion transcripts on patients' prognosis is highly controversial. In the present review, the roles of ETS protein translocations in human carcinogenesis are discussed.
RESUMO
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating gene transcription. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. They are both involved in oncogenesis and tumor suppression depending on the biological situations used. The essential roles of ETS proteins in human telomere maintenance have been suggested, which have been linked to creation of new Ets binding sites. Recently, preferential binding of ETS2 to gain-of-function mutant p53 and ETS1 to wild type p53 (WTp53) has been suggested, raising the tumor promoting role for the former and tumor suppressive role for the latter. The oncogenic and tumor suppressive functions of ETS1 and 2 proteins have been discussed.
RESUMO
The ARF and INK4a genes are located in the same CDKN2a locus, both showing its tumor suppressive activity. ARF has been shown to detect potentially harmful oncogenic signals, making incipient cancer cells undergo senescence or apoptosis. INK4a, on the other hand, responds to signals from aging in a variety of tissues including islets of Langerhans, neuronal cells, and cancer stem cells in general. It also detects oncogenic signals from incipient cancer cells to induce them senescent to prevent neoplastic transformation. Both of these genes are inactivated by gene deletion, promoter methylation, frame shift, and aberrant splicing although mutations changing the amino acid sequences affect only the latter. Recent studies indicated that polycomb gene products EZH2 and BMI1 repressed p16INK4a expression in primary cells, but not in cells deficient for pRB protein function. It was also reported that that p14ARF inhibits the stability of the p16INK4a protein in human cancer cell lines and mouse embryonic fibroblasts through its interaction with regenerating islet-derived protein 3γ. Overexpression of INK4a is associated with better prognosis of cancer when it is associated with human papilloma virus infection. However, it has a worse prognostic value in other tumors since it is an indicator of pRB loss. The p16INK4a tumor suppressive protein can thus be used as a biomarker to detect early stage cancer cells as well as advanced tumor cells with pRB inactivation since it is not expressed in normal cells.
RESUMO
Haploinsufficiency of tumor suppressor genes (TSGs) indicates that the reduced levels of proteins in cells that lack one allele of the genomic locus results in the inability of the cell to execute normal cellular functions contributing to tumor development. Representative cases of haploinsufficient TSGs are p27Kip1, p53, DMP1, NF1, and PTEN. Tumor development is significantly accelerated in both mice with homozygous and heterozygous gene deletion, with expression of the wild type allele in the latter. Newly characterized TSGs such as AML1, EGR1, TGFßR1/2, and SMAD4 have also shown haploid insufficiency for tumor suppression. This phenotype has typically been demonstrated in gene knockout mouse models, but analyses of human samples have been conducted in some cases. Recent studies suggest collaboration of multiple haploinsufficient TSGs in 5q-, 7q-, and 8q- syndromes, which is called compound haploinsufficiency. Although ARF is a classical TSG, it also belongs to this category since Arf+/- accelerates tumor development when both alleles for Ink4a are inactivated. Haploid insufficiency of Arf was also reported in myeloid leukemogenesis in the presence of inv(16). In case of p53, p53+/- cells achieve only ~25% of p53 mRNA and protein levels as compared to those in wild type, which could explain the mechanism. TGFßR1+/- collaborates with ApcMin+/- in colorectal cancer development; TGFßR2+/- and Smad4+/- collaborates with K-Ras mutation in pancreatic ductal adenocarcinomagenesis, demonstrating the synergism of haploinsufficient TSGs and other oncogenic events. These TSGs can be targets for activation therapy in cancer since they retain a functional allele even in tumor cells.
RESUMO
The use of molecular biomarkers assures that breast cancer (BC) patients receive optimal treatment. Established biomarkers, such as estrogen receptor, progesterone receptor, HER2, and Ki67, have been playing significant roles in the subcategorization of BC to predict the prognosis and decide the specific therapy to each patient. Antihormonal therapy using 4-hydroxytamoxifen or aromatase inhibitors have been employed in patients whose tumor cells express hormone receptors, while monoclonal antibody to HER2 has been administered to HER2-positive BCs. Although new therapeutic agents have been developed in the past few decades, many patients still die of the disease due to relapse; thus, novel molecular markers that predict therapeutic failure and those that can be targets for specific therapy are expected. We have chosen four of such molecules by reviewing recent publications, which are cyclin E, B-Myb, Twist, and DMP1ß. The oncogenicity of these molecules has been demonstrated in vivo and/or in vitro through studies using transgenic mice or siRNAs, and their expressions have been shown to be associated with shortened overall or disease-free survival of BC patients. The former three molecules have been shown to accelerate epithelial-mesenchymal transition that is often associated with cancer stem cell-ness and metastasis; all these four can be novel therapeutic targets as well. Thus, large prospective studies employing immunohistochemistry will be needed to establish the predictive values of these molecules in patients with BC.
RESUMO
Human c-ErbB2 (HER2) has long been used as a marker of breast cancer (BC) for sub-categorization for the prediction of prognosis, and determination of therapeutic strategies. HER2 overexpressing BCs are more invasive/metastatic; but patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors, at least at early stages. To date, numerous mouse models that faithfully reproduce HER2(+) BCs have been created in mice. We recently reviewed different mouse models of BC overexpressing wild type or mutant neu driven by MMTV, neu, or doxycycline-inducible promoters. These mice have been used to demonstrate the histopathology, oncogenic signaling pathways initiated by aberrant overexpression of HER2 in the mammary epithelium, and interaction between oncogenes and tumor suppressor genes at molecular levels. In this review, we focus on their clinical applications. They can be used to test the efficacy of HER(2) inhibitors before starting clinical trials, characterize the tumor-initiating cells that could be the cause of relapse after therapy as well as to analyze the molecular mechanisms of therapeutic resistance targeting HER2. MMTV-human ErbB2 (HER2) mouse models have recently been established since the monoclonal antibody to HER2 (trastuzumab; Herceptin®) does not recognize the rat neu protein. It has been reported that early intervention with HER2 monoclonal antibody would be beneficial for preventing mammary carcinogenesis. MDA-7/IL-24 as well as naturally-occurring chemicals have also been tested using MMTV-neu models. Recent studies have shown that MMTV-neu models are useful to develop vaccines to HER2 for immunotherapy. The mouse models employing HER2/neu will be essential for future antibody or drug screenings to overcome resistance to trastuzumab or HER(2)-specific tyrosine kinase inhibitors.