Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955493

RESUMO

Secondary spinal cord injury (SCI) is characterized by increased cytokines and chemokines at the site of injury that have been associated with the development of neuropathic pain. Nearly 80% of SCI patients report suffering from chronic pain, which is poorly managed with available analgesics. While treatment with the FDA-approved ß2-adrenergic receptor agonist, formoterol, improves various aspects of recovery post-SCI in vivo, its effects on cytokines, chemokines and neuropathic pain remain unknown. Female mice were subjected to moderate (60 kdyn) or severe (80 kdyn) SCI followed by daily treatment with vehicle or formoterol (0.3 mg/kg, i.p.) beginning 8h after injury. The expression of pro-inflammatory cytokines/chemokines, such as IP-10, MIP-1a, MCP-1, BCA-1 and NF-κB, was increased in the injury site of vehicle-treated mice 24h post-SCI, which was ameliorated with formoterol treatment, regardless of injury severity. Thermal hyperalgesia and mechanical allodynia, as measured by Hargreaves infrared apparatus and von Frey filaments, respectively, were assessed prior to SCI and then weekly beginning 21 days post injury (DPI). While all injured mice exhibited decreased withdrawal latency following thermal stimulation compared to baseline, formoterol treatment reduced this response ~15% by 35 DPI. Vehicle-treated mice displayed significant mechanical allodynia, as evidenced by a 55% decrease in withdrawal threshold from baseline. In contrast, mice treated with formoterol maintained a consistent withdrawal time at all times tested. These data indicate that formoterol reduces inflammation post-SCI, likely contributing to mitigation of neuropathic pain, and further supporting the therapeutic potential of this treatment strategy. Significance Statement Chronic pain is a detrimental consequence of spinal cord injury (SCI). We show that treatment with the FDA-approved drug formoterol after SCI decreases injury site pro-inflammatory chemo/cytokines and alters markers of glial cell activation and infiltration. Additionally, formoterol treatment improves locomotor function and body composition, and decreases lesion volume. Finally, formoterol treatment decreased mechanical allodynia and thermal hyperalgesia post-SCI. These data are suggestive of the mechanism of formoterol-induced recovery, and further indicate its potential as a therapeutic strategy for SCI.

2.
J Neurosci ; 42(2): 325-348, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819339

RESUMO

Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPßCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPßCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPßCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPßCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPßCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPßCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPßCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPßCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPßCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/tratamento farmacológico , Fatores Etários , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resultado do Tratamento
3.
J Pharmacol Exp Ther ; 380(2): 126-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34893553

RESUMO

The aim of this study was to test whether poststroke oral administration of a small molecule p75 neurotrophin receptor (p75NTR) modulator (LM11A-31) can augment neuronal survival and improve recovery in a mouse model of stroke. Mice were administered LM11A-31 for up to 12 weeks, beginning 1 week after stroke. Metabolomic analysis revealed that after 2 weeks of daily treatment, mice that received LM11A-31 were distinct from vehicle-treated mice by principal component analysis and had higher levels of serotonin, acetylcholine, and dopamine in their ipsilateral hemisphere. LM11A-31 treatment also improved redox homeostasis by restoring reduced glutathione. It also offset a stroke-induced reduction in glycolysis by increasing acetyl-CoA. There was no effect on cytokine levels in the infarct. At 13 weeks after stroke, adaptive immune cell infiltration in the infarct was unchanged in LM11A-31-treated mice, indicating that LM11A-31 does not alter the chronic inflammatory response to stroke at the site of the infarct. However, LM11A-31-treated mice had less brain atrophy, neurodegeneration, tau pathology, and microglial activation in other regions of the ipsilateral hemisphere. These findings correlated with improved recovery of motor function on a ladder test, improved sensorimotor and cognitive abilities on a nest construction test, and less impulsivity in an open field test. These data support small molecule modulation of the p75NTR for preserving neuronal health and function during stroke recovery. SIGNIFICANCE STATEMENT: The findings from this study introduce the p75 neurotrophin receptor as a novel small molecule target for promotion of stroke recovery. Given that LM11A-31 is in clinical trials as a potential therapy for Alzheimer's disease, it could be considered as a candidate for assessment in stroke or vascular dementia studies.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Isoleucina/análogos & derivados , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Glutationa/metabolismo , Glicólise , Infarto da Artéria Cerebral Média/metabolismo , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Neurotransmissores/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
4.
Brain Behav Immun ; 91: 578-586, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956832

RESUMO

Up to 30% of stroke patients experience cognitive decline within one year of their stroke. There are currently no FDA-approved drugs that can prevent post-stroke cognitive decline, in part due to a poor understanding of the mechanisms involved. We have previously demonstrated that a B-lymphocyte response to stroke, marked by IgA + cells, can cause delayed cognitive dysfunction in mice and that a similar adaptive immune response occurs in the brains of some human stroke patients that suffer from vascular dementia. The stimuli which trigger B-lymphocyte activation following stroke, and their target antigens, are still unknown. Therefore, to learn more about the mechanisms by which B-lymphocytes become activated following stroke we first characterized the temporal kinetics of the B-lymphocyte, T-lymphocyte, and plasma cell (PC) response to stroke in the brain by immunohistochemistry (IHC). We discovered that B-lymphocyte, T-lymphocyte, and plasma cell infiltration within the infarct progressively increases between 2 and 7 weeks after stroke. We then compared the B-lymphocyte response to stroke in WT, MHCII-/-, CD4-/-, and MyD88-/- mice to determine if B-lymphocytes mature into IgA + PCs through a T-lymphocyte and MyD88 dependent mechanism. Our data from a combination of IHC and flow cytometry indicate that following stroke, a population of IgA + PCs develops independently of CD4 + helper T-lymphocytes and MyD88 signaling. Subsequent sequencing of immunoglobulin genes of individual IgA + PCs present within the infarct identified a novel population of natural antibodies with few somatic mutations in complementarity-determining regions. These findings indicate that a population of IgA + PCs develops in the infarct following stroke by B-lymphocytes interacting with one or more thymus independent type 2 (TI-2) antigens, and that they produce IgA natural antibodies.


Assuntos
Ativação Linfocitária , Acidente Vascular Cerebral , Animais , Linfócitos B , Linfócitos T CD4-Positivos , Humanos , Imunoglobulina A , Camundongos
5.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923316

RESUMO

While tumoral Smad-mediated transforming growth factor ß (TGFß) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFß signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFß receptors II and I, only cells with TGFß-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFß and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFß neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFß may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFß signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Osteoclastos/patologia , Osteólise , Receptores de Estrogênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Apoptose , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Osteoclastos/metabolismo , Receptores de Estrogênio/genética , Fator de Crescimento Transformador beta/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Neurobiol Dis ; 112: 63-78, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29331263

RESUMO

Following stroke, the damaged tissue undergoes liquefactive necrosis, a stage of infarct resolution that lasts for months although the exact length of time is currently unknown. One method of repair involves reactive astrocytes and microglia forming a glial scar to compartmentalize the area of liquefactive necrosis from the rest of the brain. The formation of the glial scar is a critical component of the healing response to stroke, as well as other central nervous system (CNS) injuries. The goal of this study was to evaluate the toxicity of the extracellular fluid present in areas of liquefactive necrosis and determine how effectively it is segregated from the remainder of the brain. To accomplish this goal, we used a mouse model of stroke in conjunction with an extracellular fluid toxicity assay, fluorescent and electron microscopy, immunostaining, tracer injections into the infarct, and multiplex immunoassays. We confirmed that the extracellular fluid present in areas of liquefactive necrosis following stroke is toxic to primary cortical and hippocampal neurons for at least 7 weeks following stroke, and discovered that although glial scars are robust physical and endocytic barriers, they are nevertheless permeable. We found that molecules present in the area of liquefactive necrosis can leak across the glial scar and are removed by a combination of paravascular clearance and microglial endocytosis in the adjacent tissue. Despite these mechanisms, there is delayed atrophy, cytotoxic edema, and neuron loss in regions adjacent to the infarct for weeks following stroke. These findings suggest that one mechanism of neurodegeneration following stroke is the failure of glial scars to impermeably segregate areas of liquefactive necrosis from surviving brain tissue.


Assuntos
Infarto Cerebral/metabolismo , Cicatriz/metabolismo , Gliose/metabolismo , Neuroglia/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Infarto Cerebral/patologia , Cicatriz/patologia , Gliose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neuroglia/patologia , Acidente Vascular Cerebral/patologia
8.
Mol Imaging ; 16: 1536012117733349, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29037107

RESUMO

PURPOSE: PGN650 is a F(ab')2 antibody fragment that targets phosphatidylserine (PS), a marker normally absent that becomes exposed on tumor cells and tumor vasculature in response to oxidative stress and increases in response to therapy. PGN650 was labeled with 124I to create a positron emission tomography (PET) agent as an in vivo biomarker for tumor microenvironment and response to therapy. In this phase 0 study, we evaluated the pharmacokinetics, safety, radiation dosimetry, and tumor targeting of this tracer in a cohort of patients with cancer. METHODS: Eleven patients with known solid tumors received approximately 140 MBq (3.8 mCi) 124I-PGN650 intravenously and underwent positron emission tomography-computed tomography (PET/CT) approximately 1 hour, 3 hours, and either 24 hours or 48 hours later to establish tracer kinetics for the purpose of calculating radiation dosimetry (from integration of the organ time-activity curves and OLINDA/EXM using the adult male and female models). RESULTS: Known tumor foci demonstrated mildly increased uptake, with the highest activity at the latest imaging time. There were no unexpected adverse events. The liver was the organ receiving the highest radiation dose (0.77 mGy/MBq); the effective dose was 0.41 mSv/MBq. CONCLUSION: Although 124I-PGN650 is safe for human PET imaging, the tumor targeting with this agent in patients was less than previously observed in animal studies.


Assuntos
Biomarcadores Tumorais/metabolismo , Radioisótopos do Iodo/química , Neoplasias/patologia , Fosfatidilserinas/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Microambiente Tumoral , Adulto , Idoso , Animais , Demografia , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radiometria , Distribuição Tecidual , Tomografia Computadorizada por Raios X , Adulto Jovem
9.
Mol Ther ; 23(6): 1110-1122, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25807290

RESUMO

Described herein is a first-in-man attempt to both genetically modify T cells with an imagable suicide gene and track these transduced donor T cells in allogeneic stem cell transplantation recipients using noninvasive positron emission tomography/computerized tomography (PET/CT) imaging. A suicide gene encoding a human CD34-Herpes Simplex Virus-1-thymidine kinase (CD34-TK75) fusion enabled enrichment of retrovirally transduced T cells (TdT), control of graft-versus-host disease and imaging of TdT migration and expansion in vivo in mice and man. Analysis confirmed that CD34-TK75-enriched TdT contained no replication competent γ-retrovirus, were sensitive to ganciclovir, and displayed characteristic retroviral insertion sites (by targeted sequencing). Affinity-purified CD34-TK75(+)-selected donor T cells (1.0-13 × 10(5))/kg were infused into eight patients who relapsed after allogeneic stem cell transplantation. Six patients also were administered 9-[4-((18)F)fluoro-3-hydroxymethyl-butyl]guanine ([(18)F]FHBG) to specifically track the genetically modified donor T cells by PET/CT at several time points after infusion. All patients were assessed for graft-versus-host disease, response to ganciclovir, circulating TdT cells (using both quantitative polymerase chain reaction and [(18)F]FHBG PET/CT imaging), TdT cell clonal expansion, and immune response to the TdT. This phase 1 trial demonstrated that genetically modified T cells and [(18)F]FHBG can be safely infused in patients with relapsed hematologic malignancies after allogeneic stem cell transplantation.


Assuntos
Antígenos CD34/imunologia , Tomografia por Emissão de Pósitrons/métodos , Transplante de Células-Tronco/métodos , Linfócitos T/imunologia , Transdução Genética , Transplante Homólogo/métodos , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Linhagem Celular Tumoral , Estudos de Viabilidade , Citometria de Fluxo , Ganciclovir/farmacologia , Doença Enxerto-Hospedeiro/imunologia , Guanina/administração & dosagem , Guanina/análogos & derivados , Herpesvirus Humano 1/genética , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Células NIH 3T3 , Projetos Piloto , Linfócitos T/metabolismo , Timidina Quinase/genética , Timidina Quinase/metabolismo , Resultado do Tratamento
10.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38715255

RESUMO

Breast cancer bone metastases (BMET) are incurable, primarily osteolytic, and occur most commonly in estrogen receptor-α positive (ER+) breast cancer. ER+ human breast cancer BMET modeling in mice has demonstrated an estrogen (E2)-dependent increase in tumor-associated osteolysis and bone-resorbing osteoclasts, independent of estrogenic effects on tumor proliferation or bone turnover, suggesting a possible mechanistic link between tumoral ERα-driven osteolysis and ER+ bone progression. To explore this question, inducible secretion of the osteolytic factor, parathyroid hormone-related protein (PTHrP), was utilized as an in vitro screening bioassay to query the osteolytic potential of estrogen receptor- and signaling pathway-specific ligands in BMET-forming ER+ human breast cancer cells expressing ERα, ERß, and G protein-coupled ER. After identifying genomic ERα signaling, also responsibility for estrogen's proliferative effects, as necessary and sufficient for osteolytic PTHrP secretion, in vivo effects of a genomic-only ER agonist, estetrol (E4), on osteolytic ER+ BMET progression were examined. Surprisingly, while pharmacologic effects of E4 on estrogen-dependent tissues, including bone, were evident, E4 did not support osteolytic BMET progression (vs robust E2 effects), suggesting an important role for nongenomic ER signaling in ER+ metastatic progression at this site. Because bone effects of E4 did not completely recapitulate those of E2, the relative importance of nongenomic ER signaling in tumor vs bone cannot be ascertained here. Nonetheless, these intriguing findings suggest that targeted manipulation of estrogen signaling to mitigate ER+ metastatic progression in bone may require a nuanced approach, considering genomic and nongenomic effects of ER signaling on both sides of the tumor/bone interface.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Receptor alfa de Estrogênio , Estrogênios , Transdução de Sinais , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Animais , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Humanos , Camundongos , Estrogênios/metabolismo , Estrogênios/farmacologia , Receptor alfa de Estrogênio/metabolismo , Linhagem Celular Tumoral , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Osteólise/metabolismo , Osteólise/patologia , Receptores de Estrogênio/metabolismo
11.
Microcirculation ; 20(6): 544-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23464666

RESUMO

OBJECTIVE: We sought to test the hypothesis that turmeric-derived curcuminoids limit reperfusion brain injury in an experimental model of stroke via blockade of early microvascular inflammation during reperfusion. METHODS: Male Sprague Dawley rats subjected to MCAO/R were treated with turmeric-derived curcuminoids (vs. vehicle) 1 hour prior to reperfusion (300 mg/kg ip). Neutrophil adhesion to the cerebral microcirculation and measures of neutrophil and endothelial activation were assayed during early reperfusion (0-4 hours); cerebral infarct size, edema, and neurological function were assessed at 24 hours. Curcuminoid effects on TNFα-stimulated human brain microvascular endothelial cell (HBMVEC) were assessed. RESULTS: Early during reperfusion following MCAO, curcuminoid treatment decreased neutrophil rolling and adhesion to the cerebrovascular endothelium by 76% and 67% and prevented >50% of the fall in shear rate. The increased number and activation state (CD11b and ROS) of neutrophils were unchanged by curcuminoid treatment, while increased cerebral expression of TNFα and ICAM-1, a marker of endothelial activation, were blocked by >30%. Curcuminoids inhibited NF-κB activation and subsequent ICAM-1 gene expression in HBMVEC. CONCLUSION: Turmeric-derived curcuminoids limit reperfusion injury in stroke by preventing neutrophil adhesion to the cerebrovascular microcirculation and improving shear rate by targeting the endothelium.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Endotélio Vascular/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Antígeno CD11b/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/patologia , Humanos , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Masculino , Neutrófilos/patologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Acidente Vascular Cerebral/patologia
12.
J Nat Prod ; 76(3): 316-21, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23145932

RESUMO

Effects of curcuminoids on breast cancer cell secretion of the bone-resorptive peptide parathyroid hormone-related protein (PTHrP) and on lytic breast cancer bone metastasis were evaluated. In vitro, transforming growth factor (TGF)-ß-stimulated PTHrP secretion was inhibited by curcuminoids (IC50 = 24 µM) in MDA-MB-231 human breast cancer cells independent of effects on cell growth inhibition. Effects on TGF-ß signaling revealed decreases in phospho-Smad2/3 and Ets-1 protein levels with no effect on p-38 MAPK-mediated TGF-ß signaling. In vivo, mice were inoculated with MDA-MB-231 cells into the left cardiac ventricle and treated ip every other day with curcuminoids (25 or 50 mg/kg) for 21 days. Osteolytic bone lesion area was reduced up to 51% (p < 0.01). Consistent with specific effects on bone osteolysis, osteoclast number at the bone-tumor interface was reduced up to 53% (p < 0.05), while tumor area within bone was unaltered. In a separate study, tumor mass in orthotopic mammary xenografts was also unaltered by treatment. These data suggest that curcuminoids prevent TGF-ß induction of PTHrP and reduce osteolytic bone destruction by blockade of Smad signaling in breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Curcumina/análogos & derivados , Curcumina/farmacologia , Fator de Crescimento Transformador beta/antagonistas & inibidores , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Curcumina/química , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Estrutura Molecular , Osteólise/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/fisiologia
13.
Menopause ; 30(2): 186-192, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696643

RESUMO

OBJECTIVES: Many dietary polyphenols with potential health-promoting benefits undergo hepatic conjugation and circulate as inactive glucuronides that can be cleaved by ß-glucuronidase to reform the bioactive aglycone. Although indirect evidence suggests estrogen may induce ß-glucuronidase, little is known about ß-glucuronidase regulation across women's reproductive lifespan. Correlates of serum ß-glucuronidase activity in healthy premenopausal versus postmenopausal women were therefore examined. METHODS: ß-Glucuronidase activity and C-reactive protein (CRP) were assayed in stored serum from the Women's Breast and Bone Density Study, and dual-energy x-ray absorptiometry and anthropometry assessed body composition. Participants were premenopausal (n = 133) or postmenopausal (n = 89), and Hispanic (37%) or non-Hispanic White (63%). Multivariate linear regression models tested associations between ß-glucuronidase and menopausal status, ethnicity, CRP, and body composition metrics, overall and stratified by menopausal status. RESULTS: Postmenopausal (vs premenopausal) women were older (60.4 ± 3.7 vs 44.8 ± 2.4 y) with a lower Hispanic ethnicity prevalence (27% vs 44%), and higher serum ß-glucuronidase activity (1.5 ± 0.8 vs 1.3 ± 0.5 U/L) and CRP (4.2 ± 4.4 vs 3.3 ± 4.7 mg/L). Adjusting for confounders, ß-glucuronidase was positively associated with Hispanic ethnicity, CRP, body mass index, and total fat mass (all, P < 0.01), but not menopausal status nor lean mass. Central adiposity measures were also positively associated with ß-glucuronidase with the same covariates. CONCLUSIONS: ß-Glucuronidase enzyme activity, upon which polyphenol health-related benefits may depend, is not associated with menopausal status. Future studies are required to determine clinical significance and mechanisms driving ß-glucuronidase associations with ethnicity, inflammation, and adiposity in women.


Assuntos
Etnicidade , Pós-Menopausa , Feminino , Humanos , Pós-Menopausa/fisiologia , Adiposidade/fisiologia , Pré-Menopausa/fisiologia , Inflamação , Índice de Massa Corporal , Obesidade , Proteína C-Reativa/análise
14.
J Nucl Med ; 64(2): 320-328, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36008121

RESUMO

There remains an unmet need for molecularly targeted imaging agents for multiple myeloma (MM). The integrin very late antigen 4 (VLA4), is differentially expressed in malignant MM cells and in pathogenic inflammatory microenvironmental cells. [64Cu]Cu-CB-TE1A1P-LLP2A (64Cu-LLP2A) is a VLA4-targeted, high-affinity radiopharmaceutical with promising utility for managing patients diagnosed with MM. Here, we evaluated the safety and human radiation dosimetry of 64Cu-LLP2A for potential use in MM patients. Methods: A single-dose [natCu]Cu-LLP2A (Cu-LLP2A) tolerability and toxicity study was performed on CD-1 (Hsd:ICR) male and female mice. 64Cu-LLP2A was synthesized in accordance with good-manufacturing-practice-compliant procedures. Three MM patients and six healthy participants underwent 64Cu-LLP2A-PET/CT or PET/MRI at up to 3 time points to help determine tracer biodistribution, pharmacokinetics, and radiation dosimetry. Time-activity curves were plotted for each participant. Mean organ-absorbed doses and effective doses were calculated using the OLINDA software. Tracer bioactivity was evaluated via cell-binding assays, and metabolites from human blood samples were analyzed with analytic radio-high-performance liquid chromatography. When feasible, VLA4 expression was evaluated in the biopsy tissues using 14-color flow cytometry. Results: A 150-fold mass excess of the desired imaging dose was tolerated well in male and female CD-1 mice (no observed adverse effect level). Time-activity curves from human imaging data showed rapid tracer clearance from blood via the kidneys and bladder. The effective dose of 64Cu-LLP2A in humans was 0.036 ± 0.006 mSv/MBq, and the spleen had the highest organ uptake, 0.142 ± 0.034 mSv/MBq. Among all tissues, the red marrow demonstrated the highest residence time. Image quality analysis supports an early imaging time (4-5 h after injection of the radiotracer) as optimal. Cell studies showed statistically significant blocking for the tracer produced for all human studies (82.42% ± 13.47%). Blood metabolism studies confirmed a stable product peak (>90%) up to 1 h after injection of the radiopharmaceutical. No clinical or laboratory adverse events related to 64Cu-LLP2A were observed in the human participants. Conclusion: 64Cu-LLP2A exhibited a favorable dosimetry and safety profile for use in humans.


Assuntos
Mieloma Múltiplo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Feminino , Animais , Camundongos , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Camundongos Endogâmicos ICR , Tomografia por Emissão de Pósitrons/efeitos adversos , Tomografia por Emissão de Pósitrons/métodos , Radiometria , Mieloma Múltiplo/metabolismo
15.
J Nutr Biochem ; 99: 108842, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34407450

RESUMO

TGFß signaling promotes progression of bone-metastatic (BMET) breast cancer (BCa) cells by driving tumor-associated osteolysis, a hallmark of BCa BMETs, thus allowing for tumor expansion within bone. Turmeric-derived bioactive curcumin, enriched in bone via local enzymatic deconjugation of inactive circulating curcumin-glucuronides, inhibits osteolysis and BMET progression in human xenograft BCa BMET models by blocking tumoral TGFß signaling pathways mediating osteolysis. This is a unique antiosteolytic mechanism in contrast to current osteoclast-targeting therapeutics. Therefore, experiments were undertaken to elucidate the mechanism for curcumin inhibition of BCa TGFß signaling and the application of this finding across multiple BCa cell lines forming TGFß-dependent BMETs, including a possible role for bioactive curcumin metabolites in mediating these effects. Immunoblot analysis of TGFß signaling proteins in bone tropic human (MDA-SA, MDA-1833, MDA-2287) and murine (4T1) BCa cells revealed uniform curcumin blockade of TGFß-induced Smad activation due to down-regulation of plasma membrane associated TGFßR2 and cellular receptor Smad proteins that propagate Smad-mediated gene expression, resulting in downregulation of PTHrP expression, the osteolytic factor driving in vivo BMET progression. With the exception of early decreases in TGFßR2, inhibitory effects appeared to be mediated by oxidative metabolites of curcumin and involved inhibition of gene expression. Interestingly, while not contributing to changes in Smad-mediated TGFß signaling, curcumin caused early activation of MAPK signaling in all cell lines, including JNK, an effect possibly involving interactions with TGFßR2 within lipid rafts. Treatment with curcumin or oxidizable analogs of curcumin may have clinical relevancy in the management of TGFß-dependent BCa BMETs.


Assuntos
Neoplasias Ósseas/prevenção & controle , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Curcumina/administração & dosagem , Fator de Crescimento Transformador beta1/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Curcumina/química , Feminino , Humanos , Camundongos , Oxirredução , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/genética
16.
Microcirculation ; 18(7): 552-61, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21699626

RESUMO

OBJECTIVE: We tested the hypothesis that both chronic and acute inflammatory processes contribute to worse reperfusion injury and stroke outcome in an experimental model of T2DM. MATERIALS AND METHODS: Twelve- to thirteen-week-old male Zucker Diabetic Fatty (ZDF) rats vs. Zucker Lean Controls (ZLC) rats were tested at baseline and after middle cerebral artery occlusion (ischemia) and reperfusion (I-R). Neutrophil adhesion to the cerebral microcirculation, neutrophil expression of CD11b, infarction size, edema, neurologic function, sICAM, and cerebral expression of neutrophil-endothelial inflammatory genes were measured. RESULTS: At baseline, CD11b and sICAM were significantly increased in ZDF vs. ZLC animals (p < 0.05). After I-R, significantly more neutrophil adhesion and cell aggregates were observed in ZDF vs. ZLC (p < 0.05); infarction size, edema, and neurologic function were significantly worse in ZDF vs. ZLC (p < 0.05). CD11b and sICAM-1 remained significantly increased in ZDFs (p < 0.05), and cerebral expression of IL-1ß, GRO/KC, E-selectin, and sICAM were significantly induced in ZDF, but not ZLC groups (p < 0.05) after 2.5 hours of reperfusion. CONCLUSION: Both sides of the neutrophil-endothelial interface appear to be primed prior to I-R, and remain significantly more activated during I-R in an experimental model of T2DM. Consequently, reperfusion injury appears to play a significant role in poor stroke outcome in T2DM.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Endotélio Vascular/metabolismo , Neutrófilos/metabolismo , Traumatismo por Reperfusão/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Antígeno CD11b/biossíntese , Adesão Celular , Quimiocina CXCL1/biossíntese , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Selectina E/biossíntese , Endotélio Vascular/patologia , Regulação da Expressão Gênica , Interleucina-1beta/biossíntese , Neutrófilos/patologia , Ratos , Ratos Zucker , Traumatismo por Reperfusão/patologia , Acidente Vascular Cerebral/patologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-34790880

RESUMO

AIM: Estrogen receptor α-positive (ER+) subtypes of breast cancer have the greatest predilection for forming osteolytic bone metastases (BMETs). Because tumor-derived factors mediate osteolysis, a possible role for tumoral ERα signaling in driving ER+ BMET osteolysis was queried using an estrogen (E2)-dependent ER+ breast cancer BMET model. METHODS: Female athymic Foxn1nu mice were inoculated with human ER+ MCF-7 breast cancer cells via the left cardiac ventricle post-E2 pellet placement, and age- and dose-dependent E2 effects on osteolytic ER+ BMET progression, as well as direct bone effects of E2, were determined. RESULTS: Osteolytic BMETs, which did not form in the absence of E2 supplementation, occurred with the same frequency in young (5-week-old) vs. skeletally mature (16-week-old) E2 (0.72 mg)-treated mice, but were larger in young mice where anabolic bone effects of E2 were greater. However, in mice of a single age and across a range of E2 doses, anabolic E2 bone effects were constant, while osteolytic ER+ BMET lesion incidence and size increased in an E2-dose-dependent fashion. Osteoclasts in ER+ tumor-bearing (but not tumor-naive) mice increased in an E2-dose dependent fashion at the bone-tumor interface, while histologic tumor size and proliferation did not vary with E2 dose. E2-inducible tumoral secretion of the osteolytic factor parathyroid hormone-related protein (PTHrP) was dose-dependent and mediated by ERα, with significantly greater levels of secretion from ER+ BMET-derived tumor cells. CONCLUSION: These results suggest that tumoral ERα signaling may contribute to ER+ BMET-associated osteolysis, potentially explaining the greater predilection for ER+ tumors to form clinically-evident osteolytic BMETs.

18.
Clin Exp Metastasis ; 37(2): 269-281, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863240

RESUMO

Estrogen (E2)-dependent ER+ breast cancer, the most common breast cancer subtype, is also the most likely to metastasize to bone and form osteolytic lesions. However, ER+ breast cancer bone metastasis human xenograft models in nude mice are rarely studied due to complexities associated with distinguishing possible tumoral vs. bone microenvironmental effects of E2. To address this knowledge gap, we systematically examined bone effects of E2 in developing young (4-week-old) vs. skeletally mature (15-week-old) female Foxn1nu nude mice supplemented with commercial 60-day slow-release E2 pellets and doses commonly used for ER+ xenograft models. E2 pellets (0.05-0.72 mg) were implanted subcutaneously and longitudinal changes in hind limb bones (vs. age-matched controls) were determined over 6 weeks by dual-energy X-ray absorptiometry (DXA), microCT, radiographic imaging, and histology, concurrent with assessment of serum levels of E2 and bone turnover markers. All E2 doses tested induced significant and identical increases in bone density (BMD) and volume (BV/TV) in 4-week-old mice with high bone turnover, increasing bone mineral content (BMC) while suppressing increases in bone area (BA). E2 supplementation, which caused dose-dependent changes in circulating E2 that were not sustained, also led to more modest increases in BMD and BV/TV in skeletally mature 15-week-old mice. Notably, E2-supplementation induced osteolytic osteosarcomas in a subset of mice independent of age. These results demonstrate that bone effects of E2 supplementation should be accounted for when assessing ER+ human xenograft bone metastases models.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/efeitos dos fármacos , Estradiol/administração & dosagem , Osteólise/induzido quimicamente , Osteossarcoma/induzido quimicamente , Absorciometria de Fóton , Animais , Densidade Óssea/efeitos dos fármacos , Densidade Óssea/fisiologia , Neoplasias Ósseas/secundário , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/fisiologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Neoplasias da Mama/patologia , Preparações de Ação Retardada/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Fatores de Transcrição Forkhead/genética , Membro Posterior , Humanos , Camundongos , Camundongos Nus , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteólise/patologia , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Receptores de Estrogênio/metabolismo , Microtomografia por Raio-X , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Nutr Food Res ; 64(14): e2000072, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506808

RESUMO

SCOPE: Curcumin prevents bone loss in resorptive bone diseases and inhibits osteoclast formation, a key process driving bone loss. Curcumin circulates as an inactive glucuronide that can be deconjugated in situ by bone's high ß-glucuronidase (GUSB) content, forming the active aglycone. Because curcumin is a common remedy for musculoskeletal disease, effects of microenvironmental changes consequent to skeletal development or disease on bone curcumin metabolism are explored. METHODS AND RESULTS: Across sexual/skeletal development or between sexes in C57BL/6 mice ingesting curcumin (500 mg kg-1 ), bone curcumin metabolism and GUSB enzyme activity are unchanged, except for >twofold higher (p < 0.05) bone curcumin-glucuronide substrate levels in immature (4-6-week-old) mice. In ovariectomized (OVX) or bone metastasis-bearing female mice, bone substrate levels are also >twofold higher. Aglycone curcumin levels tend to increase proportional to substrate such that the majority of glucuronide distributing to bone is deconjugated, including OVX mice where GUSB decreases by 24% (p < 0.01). GUSB also catalyzes deconjugation of resveratrol and quercetin glucuronides by bone, and a requirement for the aglycones for anti-osteoclastogenic bioactivity, analogous to curcumin, is confirmed. CONCLUSION: Dietary polyphenols circulating as glucuronides may require in situ deconjugation for bone-protective effects, a process influenced by bone microenvironmental changes.


Assuntos
Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Curcumina/farmacocinética , Polifenóis/farmacologia , Envelhecimento , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Curcumina/administração & dosagem , Curcumina/análogos & derivados , Curcumina/metabolismo , Feminino , Glucuronidase/metabolismo , Glucuronídeos/farmacocinética , Masculino , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteólise/tratamento farmacológico , Osteólise/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Ovariectomia , Polifenóis/farmacocinética , Quercetina/farmacologia
20.
J Nat Prod ; 72(3): 403-7, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19216559

RESUMO

Ginger (Zingiber officinale) supplements are being promoted for arthritis treatment in western societies on the basis of ginger's traditional use as an anti-inflammatory in Chinese and Ayurvedic medicine. However, scientific evidence of ginger's antiarthritic effects is sparse, and its bioactive joint-protective components have not been identified. Therefore, the ability of a well-characterized crude ginger extract to inhibit joint swelling in an animal model of rheumatoid arthritis, streptococcal cell wall-induced arthritis, was compared to that of a fraction containing only gingerols and their derivatives. Both extracts were efficacious in preventing joint inflammation. However, the crude dichloromethane extract, which also contained essential oils and more polar compounds, was more efficacious (when normalized to gingerol content) in preventing both joint inflammation and destruction. In conclusion, these data document a very significant joint-protective effect of these ginger samples and suggest that nongingerol components are bioactive and can enhance the antiarthritic effects of the more widely studied gingerols.


Assuntos
Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Catecóis/farmacocinética , Catecóis/uso terapêutico , Álcoois Graxos/farmacocinética , Álcoois Graxos/uso terapêutico , Zingiber officinale/química , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Feminino , Ayurveda , Medicina Tradicional Chinesa , Estrutura Molecular , Extratos Vegetais/farmacocinética , Extratos Vegetais/uso terapêutico , Ratos , Ratos Endogâmicos Lew
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA