Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.490
Filtrar
1.
Nat Immunol ; 21(9): 1107-1118, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32788748

RESUMO

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between disease severity and the host immune response is not fully understood. Here we performed single-cell RNA sequencing in peripheral blood samples of 5 healthy donors and 13 patients with COVID-19, including moderate, severe and convalescent cases. Through determining the transcriptional profiles of immune cells, coupled with assembled T cell receptor and B cell receptor sequences, we analyzed the functional properties of immune cells. Most cell types in patients with COVID-19 showed a strong interferon-α response and an overall acute inflammatory response. Moreover, intensive expansion of highly cytotoxic effector T cell subsets, such as CD4+ effector-GNLY (granulysin), CD8+ effector-GNLY and NKT CD160, was associated with convalescence in moderate patients. In severe patients, the immune landscape featured a deranged interferon response, profound immune exhaustion with skewed T cell receptor repertoire and broad T cell expansion. These findings illustrate the dynamic nature of immune responses during disease progression.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Interferon Tipo I/metabolismo , Pneumonia Viral/imunologia , Receptores Imunológicos/metabolismo , Adolescente , Adulto , Idoso , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , COVID-19 , Estudos de Coortes , Infecções por Coronavirus/sangue , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Humanos , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , RNA-Seq , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , SARS-CoV-2 , Índice de Gravidade de Doença , Análise de Célula Única
2.
Plant J ; 119(4): 1859-1879, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923625

RESUMO

In the field, necrosis area induced by pathogens is usually surrounded by a red circle in apple fruits. However, the underlying molecular mechanism of this phenomenon remains unclear. In this study, we demonstrated that accumulated salicylic acid (SA) induced by fungal infection promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module in apple (Malus domestica). Inoculating apple fruits with Valsa mali or Botryosphaeria dothidea induced a red circle surrounding the necrosis area, which mimicked the phenotype observed in the field. The red circle accumulated a high level of anthocyanins, which was positively correlated with SA accumulation stimulated by fungal invasion. Further analysis showed that SA promoted anthocyanin biosynthesis in a dose-dependent manner in both apple calli and fruits. We next demonstrated that MdNPR1, a master regulator of SA signaling, positively regulated anthocyanin biosynthesis in both apple and Arabidopsis. Moreover, MdNPR1 functioned as a co-activator to interact with and enhance the transactivation activity of MdTGA2.2, which could directly bind to the promoters of anthocyanin biosynthetic and regulatory genes to promote their transcription. Suppressing expression of either MdNPR1 or MdTGA2.2 inhibited coloration of apple fruits, while overexpressing either of them significantly promoted fruit coloration. Finally, we revealed that silencing either MdNPR1 or MdTGA2.2 in apple fruits repressed SA-induced fruit coloration. Therefore, our data determined that fungal-induced SA promoted anthocyanin biosynthesis through MdNPR1-MdTGA2.2 module, resulting in a red circle surrounding the necrosis area in apple fruits.


Assuntos
Antocianinas , Ascomicetos , Frutas , Regulação da Expressão Gênica de Plantas , Malus , Doenças das Plantas , Proteínas de Plantas , Ácido Salicílico , Malus/microbiologia , Malus/genética , Malus/metabolismo , Ácido Salicílico/metabolismo , Antocianinas/biossíntese , Antocianinas/metabolismo , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/microbiologia , Frutas/metabolismo , Frutas/genética , Arabidopsis/microbiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Am J Physiol Cell Physiol ; 327(4): C929-C945, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39099421

RESUMO

In the context of improving the efficacy of autologous fat grafts (AFGs) in reconstructive surgery, this study delineates the novel use of adipose-derived mesenchymal stem cells (ADSCs) and their extracellular vesicles (EVs) as vehicles for delivering delta-like ligand 4 (DLL4) siRNA. The aim was to inhibit DLL4, a gene identified through transcriptome analysis as a critical player in the vascular endothelial cells of AFG tissues, thereby negatively affecting endothelial cell functions and graft survival through the Notch signaling pathway. By engineering ADSC EVs to carry DLL4 siRNA (ADSC EVs-siDLL4), the research demonstrated a marked improvement in endothelial cell proliferation, migration, and lumen formation, and enhanced angiogenesis in vivo, leading to a significant increase in the survival rate of AFGs. This approach presents a significant advancement in the field of tissue engineering and regenerative medicine, offering a potential method to overcome the limitations of current fat grafting techniques.NEW & NOTEWORTHY This study introduces a groundbreaking method for enhancing autologous fat graft survival using adipose-derived stem cell extracellular vesicles (ADSC EVs) to deliver DLL4 siRNA. By targeting the delta-like ligand 4 (DLL4) gene, crucial in endothelial cell dynamics, this innovative approach significantly improves endothelial cell functions and angiogenesis, marking a substantial advancement in tissue engineering and regenerative medicine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Tecido Adiposo , Proteínas de Ligação ao Cálcio , Células Endoteliais , Vesículas Extracelulares , Células-Tronco Mesenquimais , RNA Interferente Pequeno , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Vesículas Extracelulares/genética , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Células Endoteliais/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Neovascularização Fisiológica , Proliferação de Células , Camundongos , Transdução de Sinais , Sobrevivência de Enxerto/fisiologia , Células Cultivadas , Movimento Celular
4.
Cancer Immunol Immunother ; 73(2): 35, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280005

RESUMO

Osteosarcoma (OS) represents a profoundly invasive malignancy of the skeletal system. T cell exhaustion (Tex) is known to facilitate immunosuppression and tumor progression, but its role in OS remains unclear. In this study, single-cell RNA sequencing data was employed to identify exhausted T cells within the tumor immune microenvironment (TIME) of OS. We found that exhausted T cells exhibited substantial infiltration in OS samples. Pseudotime trajectory analysis revealed a progressive increase in the expression of various Tex marker genes, including PDCD1, CTLA4, LAG3, ENTPD1, and HAVCR2 in OS. GSVA showed that apoptosis, fatty acid metabolism, xenobiotic metabolism, and the interferon pathway were significantly activated in exhausted T cells in OS. Subsequently, a prognostic model was constructed using two Tex-specific genes, MYC and FCGR2B, which exhibited exceptional prognostic accuracy in two independent cohorts. Drug sensitivity analysis revealed that OS patients with a low Tex risk were responsive to Dasatinib and Pazopanib. Finally, immunohistochemistry verified that MYC and FCGR2B were significantly upregulated in OS tissues compared with adjacent tissues. This study investigates the role of Tex within the TIME of OS, and offers novel insights into the mechanisms underlying disease progression as well as the potential treatment strategies for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Exaustão das Células T , Transcriptoma , Osteossarcoma/genética , Apoptose , Neoplasias Ósseas/genética , Microambiente Tumoral , Prognóstico
5.
Plant Biotechnol J ; 22(8): 2157-2172, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38506090

RESUMO

Chilling stress has seriously limited the global production and geographical distribution of rice. However, the molecular mechanisms associated with plant responses to chilling stress are less known. In this study, we revealed a member of ß-ketoacyl-ACP synthase I family (KASI), OsKASI-2 which confers chilling tolerance in rice. OsKASI-2 encodes a chloroplast-localized KASI enzyme mainly expressed in the leaves and anthers of rice and strongly induced by chilling stress. Disruption of OsKASI-2 led to decreased KAS enzymatic activity and the levels of unsaturated fatty acids, which impairs degree of unsaturation of membrane lipids, thus increased sensitivity to chilling stress in rice. However, the overexpression of OsKASI-2 significantly improved the chilling tolerance ability in rice. In addition, OsKASI-2 may regulate ROS metabolism in response to chilling stress. Natural variation of OsKASI-2 might result in difference in chilling tolerance between indica and japonica accessions, and Hap1 of OsKASI-2 confers chilling tolerance in rice. Taken together, we suggest OsKASI-2 is critical for regulating degree of unsaturation of membrane lipids and ROS accumulation for maintenance of membrane structural homeostasis under chilling stress, and provide a potential target gene for improving chilling tolerance of rice.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Lipídeos de Membrana , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo
6.
J Transl Med ; 22(1): 314, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532419

RESUMO

BACKGROUND: Bladder cancer (BC) is a very common urinary tract malignancy that has a high incidence and lethality. In this study, we identified BC biomarkers and described a new noninvasive detection method using serum and urine samples for the early detection of BC. METHODS: Serum and urine samples were retrospectively collected from patients with BC (n = 99) and healthy controls (HC) (n = 50), and the expression levels of 92 inflammation-related proteins were examined via the proximity extension analysis (PEA) technique. Differential protein expression was then evaluated by univariate analysis (p < 0.05). The expression of the selected potential marker was further verified in BC and adjacent tissues by immunohistochemistry (IHC) and single-cell sequencing. A model was constructed to differentiate BC from HC by LASSO regression and compared to the detection capability of FISH. RESULTS: The univariate analysis revealed significant differences in the expression levels of 40 proteins in the serum (p < 0.05) and 17 proteins in the urine (p < 0.05) between BC patients and HC. Six proteins (AREG, RET, WFDC2, FGFBP1, ESM-1, and PVRL4) were selected as potential BC biomarkers, and their expression was evaluated at the protein and transcriptome levels by IHC and single-cell sequencing, respectively. A diagnostic model (a signature) consisting of 14 protein markers (11 in serum and three in urine) was also established using LASSO regression to distinguish between BC patients and HC (area under the curve = 0.91, PPV = 0.91, sensitivity = 0.87, and specificity = 0.82). Our model showed better diagnostic efficacy than FISH, especially for early-stage, small, and low-grade BC. CONCLUSION: Using the PEA method, we identified a panel of potential protein markers in the serum and urine of BC patients. These proteins are associated with the development of BC. A total of 14 of these proteins can be used to detect early-stage, small, low-grade BC. Thus, these markers are promising for clinical translation to improve the prognosis of BC patients.


Assuntos
Detecção Precoce de Câncer , Neoplasias da Bexiga Urinária , Humanos , Estudos Retrospectivos , Curva ROC , Detecção Precoce de Câncer/métodos , Neoplasias da Bexiga Urinária/patologia , Biomarcadores Tumorais
7.
J Transl Med ; 22(1): 668, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026250

RESUMO

BACKGROUND: The heightened risk of cardiovascular and cerebrovascular events is associated with the increased instability of atherosclerotic plaques. However, the lack of effective diagnostic biomarkers has impeded the assessment of plaque instability currently. This study was aimed to investigate and identify hub genes associated with unstable plaques through the integration of various bioinformatics tools, providing novel insights into the detection and treatment of this condition. METHODS: Weighted Gene Co-expression Network Analysis (WGCNA) combined with two machine learning methods were used to identify hub genes strongly associated with plaque instability. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method was utilized to assess immune cell infiltration patterns in atherosclerosis patients. Additionally, Gene Set Variation Analysis (GSVA) was conducted to investigate the potential biological functions, pathways, and mechanisms of hub genes associated with unstable plaques. To further validate the diagnostic efficiency and expression of the hub genes, immunohistochemistry (IHC), quantitative real-time polymerase chain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) were performed on collected human carotid plaque and blood samples. Immunofluorescence co-staining was also utilized to confirm the association between hub genes and immune cells, as well as their colocalization with mitochondria. RESULTS: The CIBERSORT analysis demonstrated a significant decrease in the infiltration of CD8 T cells and an obvious increase in the infiltration of M0 macrophages in patients with atherosclerosis. Subsequently, two highly relevant modules (blue and green) strongly associated with atherosclerotic plaque instability were identified. Through intersection with mitochondria-related genes, 50 crucial genes were identified. Further analysis employing least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) algorithms revealed six hub genes significantly associated with plaque instability. Among them, NT5DC3, ACADL, SLC25A4, ALDH1B1, and MAOB exhibited positive correlations with CD8 T cells and negative correlations with M0 macrophages, while kynurenine 3-monooxygenas (KMO) demonstrated a positive correlation with M0 macrophages and a negative correlation with CD8 T cells. IHC and RT-qPCR analyses of human carotid plaque samples, as well as ELISA analyses of blood samples, revealed significant upregulation of KMO and MAOB expression, along with decreased ALDH1B1 expression, in both stable and unstable samples compared to the control samples. However, among the three key genes mentioned above, only KMO showed a significant increase in expression in unstable plaque samples compared to stable plaque samples. Furthermore, the expression patterns of KMO in human carotid unstable plaque tissues and cultured mouse macrophage cell lines were assessed using immunofluorescence co-staining techniques. Finally, lentivirus-mediated KMO silencing was successfully transduced into the aortas of high-fat-fed ApoE-/- mice, with results indicating that KMO silencing attenuated plaque formation and promoted plaque stability in ApoE-/- mice. CONCLUSIONS: The results suggest that KMO, a mitochondria-targeted gene associated with macrophage cells, holds promise as a valuable diagnostic biomarker for assessing the instability of atherosclerotic plaques.


Assuntos
Placa Aterosclerótica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genes Mitocondriais/genética , Macrófagos/metabolismo , Macrófagos/patologia , Mitocôndrias/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Reprodutibilidade dos Testes , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo
8.
Plant Cell Environ ; 47(12): 4664-4682, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39049759

RESUMO

Fruit colour is a critical determinant for the appearance quality and commercial value of apple fruits. Viroid-induced dapple symptom severely affects the fruit coloration, however, the underlying mechanism remains unknown. In this study, we identified an apple dimple fruit viroid (ADFVd)-derived small interfering RNA, named vsiR693, which targeted the mRNA coding for a bHLH transcription factor MdPIF1 (PHYTOCHROME-INTERACTING FACTOR 1) to regulate anthocyanin biosynthesis in apple. 5' RLM-RACE and artificial microRNA transient expression system proved that vsiR693 directly targeted the mRNA of MdPIF1 for cleavage. MdPIF1 positively regulated anthocyanin biosynthesis in both apple calli and fruits, and it directly bound to G-box element in the promoter of MdPAL and MdF3H, two anthocyanin biosynthetic genes, to promote their transcription. Expression of vsiR693 negatively regulated anthocyanin biosynthesis in both apple calli and fruits. Furthermore, co-expression of vsiR693 and MdPIF1 suppressed MdPIF1-promoted anthocyanin biosynthesis in apple fruits. Infiltration of ADFVd infectious clone suppressed coloration surrounding the injection sites in apple fruits, while a mutated version of ADFVd, in which the vsiR693 producing region was mutated, failed to repress fruit coloration around the injection sites. These data provide evidence that a viroid-derived small interfering RNA targets host transcription factor to regulate anthocyanin biosynthesis in apple.


Assuntos
Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação da Expressão Gênica de Plantas , Malus , Proteínas de Plantas , RNA Interferente Pequeno , Viroides , Antocianinas/biossíntese , Antocianinas/metabolismo , Malus/virologia , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Viroides/genética , Viroides/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Frutas/genética , Frutas/virologia , Frutas/metabolismo , Regiões Promotoras Genéticas/genética
9.
Ann Neurol ; 93(2): 244-256, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36088542

RESUMO

OBJECTIVE: Despite the increasing number of genes associated with Charcot-Marie-Tooth (CMT) disease, many patients currently still lack appropriate genetic diagnosis for this disease. Autosomal dominant mutations in aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT. Here, we describe causal missense mutations in the gene encoding seryl-tRNA synthetase 1 (SerRS) for 3 families affected with CMT. METHODS: Whole-exome sequencing was performed in 16 patients and 14 unaffected members of 3 unrelated families. The functional impact of the genetic variants identified was investigated using bioinformatic prediction tools and confirmed using cellular and biochemical assays. RESULTS: Combined linkage analysis for the 3 families revealed significant linkage (Zmax LOD = 6.9) between the genomic co-ordinates on chromosome 1: 108681600-110300504. Within the linkage region, heterozygous SerRS missense variants segregated with the clinical phenotype in the 3 families. The mutant SerRS proteins exhibited reduced aminoacylation activity and abnormal SerRS dimerization, which suggests the impairment of total protein synthesis and induction of eIF2α phosphorylation. INTERPRETATION: Our findings suggest the heterozygous SerRS variants identified represent a novel cause for autosomal dominant CMT. Mutant SerRS proteins are known to impact various molecular and cellular functions. Our findings provide significant advances on the current understanding of the molecular mechanisms associated with ARS-related CMT. ANN NEUROL 2023;93:244-256.


Assuntos
Doença de Charcot-Marie-Tooth , Serina-tRNA Ligase , Humanos , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Serina-tRNA Ligase/genética , Mutação , Heterozigoto , Mutação de Sentido Incorreto/genética
10.
Cancer Cell Int ; 24(1): 340, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402601

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) has been improving the patient outcome in multiple cancer types. However, not all patients respond to ICB. Biomarkers are needed for selecting appropriate patients to receive ICB. CD74 is an important chaperone that regulates antigen presentation for immune response. However, the relationship between CD74 expression and ICB response remains elusive. METHODS: The unified normalized pan-cancer dataset was downloaded from the UCSC database. Wilcoxon Rank Sum Rank Tests were used to analyze the expression differences between normal and tumor samples in each tumor type. Then, the prognostic value of CD74 was determined using univariable Cox proportional hazards regression analysis. The STRING database was utilized to construct the protein-protein interaction (PPI) network of CD74 and the signal pathways were analyzed as well. The correlation of CD74 expression with immune cells and immune regulating genes was investigated in the TIMER database. The TIDE framework was utilized to evaluate the relationship between CD74 expression and the response to immunotherapy. Moreover, the localization of CD74 in the tumor immune microenvironment was verified using multiplex immunohistochemistry. Clinically annotated samples from 38 patients with esophageal cancer treated with neoadjuvant chemotherapy combined with ICB were analyzed for CD74 expression using immunohistochemistry. RESULTS: In this study, we investigated the prognostic and predictive value of CD74 in different types of cancer. Compared with normal tissue, the expression of CD74 was higher in tumor tissue in various cancers. High expression of CD74 was associated with improved patient prognosis in the majority of cancers. CD74 and its interacting proteins were mainly enriched in the immune-related pathways. The expression of CD74 was significantly positively correlated with B cells, CD4 T-cells, CD8 T-cells, neutrophils, macrophages and dendritic cells. TIDE analysis showed that tumors with high CD74 expression may have better responses to immunotherapy and improved patient survival. In patients with esophageal cancer who had received ICB, higher intratumoral CD74 expression was associated with improved response to ICB. CONCLUSIONS: The findings of this study suggest that the high expression of CD74 may be a potential predictive biomarker of response to ICB.

11.
BMC Cancer ; 24(1): 358, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509498

RESUMO

BACKGROUND: The prognostic significance of tumor burden score (TBS) in relation to carcinoembryonic antigen (CEA) has not been investigated among patients undergoing hepatectomy for intrahepatic cholangiocarcinoma (ICC). This study aimed to develop and validate a simplified model, a combination of TBS and CEA (CTC grade), for predicting the long-term outcomes of postoperative ICC patients. METHODS: Patients who underwent curative - intent resection of ICC between 2011 and 2019 were identified from a large multi - institutional database. The impact of TBS, CEA, and the CTC grade on overall survival (OS) and recurrence - free survival (RFS) was evaluated in both the derivation and validation cohorts. The receiver operating characteristic curve was utilized for assessing the predictive accuracy of the model. Subgroup analyses were performed across 8th TNM stage system stratified by CTC grade to assess the discriminatory capacity within the same TNM stage. RESULTS: A total of 812 patients were included in the derivation cohort and 266 patients in the validation cohort. Survival varied based on CEA (low: 36.7% vs. high: 9.0%) and TBS (low: 40.3% vs. high: 17.6%) in relation to 5 - year survival (both p < 0.001). As expected, patients with low CTC grade (i.e., low TBS/low CEA) were associated with the best OS as well as RFS, while high CTC grade (i.e., high TBS/high CEA) correlated to the worst outcomes. The model exhibited well performance in both the derivation cohort (area under the curve of 0.694) and the validation cohort (0.664). The predictive efficacy of the CTC grade system remains consistently stable across TNM stages I and III/IV. CONCLUSION: The CTC grade, a composite parameter derived from the combination of TBS and CEA levels, served as an easy - to - use tool and performed well in stratifying patients with ICC relative to OS and RFS.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Hepatectomia , Antígeno Carcinoembrionário , Carga Tumoral , Colangiocarcinoma/patologia , Prognóstico , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Estudos Retrospectivos
12.
Mol Pharm ; 21(6): 2993-3005, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38722865

RESUMO

The susceptibility of lysosomal membranes in tumor cells to cationic amphiphilic drugs (CADs) enables CADs to induce lysosomal membrane permeabilization (LMP) and trigger lysosome-dependent cell death (LDCD), suggesting a potential antitumor therapeutic approach. However, the existence of intrinsic lysosomal damage response mechanisms limits the display of the pharmacological activity of CADs. In this study, we report that low concentrations of QS-21, a saponin with cationic amphiphilicity extracted from Quillaja Saponaria tree, can induce LMP but has nontoxicity to tumor cells. QS-21 and MAP30, a type I ribosome-inactivating protein, synergistically induce apoptosis in tumor cells at low concentrations of both. Mechanistically, QS-21-induced LMP helps MAP30 escape from endosomes or lysosomes and subsequently enter the endoplasmic reticulum, where MAP30 downregulates the expression of autophagy-associated LC3 proteins, thereby inhibiting lysophagy. The inhibition of lysophagy results in the impaired clearance of damaged lysosomes, leading to the leakage of massive lysosomal contents such as cathepsins into the cytoplasm, ultimately triggering LDCD. In summary, our study showed that coadministration of QS-21 and MAP30 amplified the lysosomal disruption and can be a new synergistic LDCD-based antitumor therapy.


Assuntos
Antineoplásicos , Apoptose , Autofagia , Lisossomos , Proteínas Inativadoras de Ribossomos Tipo 1 , Saponinas , Animais , Humanos , Camundongos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Quillaja/química , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saponinas/farmacologia
13.
Crit Rev Immunol ; 43(4): 15-27, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37830191

RESUMO

Emerging evidence suggests that dysregulation of a N6-methyladenosine (m6A) methyltransferase KIAA1429 participates in the pathogenesis of multiple cancers except for nasopharyngeal carcinoma (NPC). This study is aimed to explore the function of KIAA1429 in NPC progression. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used to confirm the mRNA expression in NPC by bioinformatic analysis. The levels of KIAA1429 and PTGS2 was detected by quantitative reverse transcription polymerase chain reaction and Western blotting. To investigate the effects of KIAA1429/PTGS2 knockdown or overexpression vectors on NPC cell malignancy, cell and animal experiments were performed. Finally, MeRIP and mRNA stability assays were used to verify the m6A modification and mRNA stability, respectively. KIAA1429 was upregulated in NPC tissues and cells. After transfecting KIAA1429 knockdown or overexpression vectors in NPC cells, we proved that KIAA1429 overexpression promoted proliferation, migration, invasion, and tumor growth, whereas KIAA1429 knockdown showed the opposite effect. Our results also indicated that KIAA1429 mediated m6A modification of PTGS2, enhancing PTGS2 mRNA stability in NPC cells. In addition, PTGS2 could also regulate the effects of KIAA1429 on NPC cell malignancy. This study confirmed the oncogenic function of KIAA1429 in NPC through m6A-modification of PTGS2, suggesting that targeting KIAA1429-mediated m6A modification of PTGS2 might provide a new therapeutic strategy for NPC.


Assuntos
Metiltransferases , Neoplasias Nasofaríngeas , Animais , Humanos , Ciclo-Oxigenase 2/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia
14.
Am J Geriatr Psychiatry ; 32(7): 856-866, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38383225

RESUMO

BACKGROUND: Mental disorders and cognitive impairment are common in older patients with arthritis. While it is recognized that mental conditions may play a role in the connection between arthritis and cognitive impairment, the precise underlying relationship remains uncertain. METHODS: The data was derived from the baseline survey of the Guangdong Mental Health Survey in South China, involving a sample of 3,764 citizens aged 65 and older. An array of aspects were explored, including socio-demographics, lifestyle behaviors, self-reported chronic conditions, depression, anxiety, and cognitive impairment. Logistic regression analyses examined the association between arthritis and cognitive impairment after adjustment for potential confounders. Serial mediation models were used to examine whether depression or anxiety played a mediating role in the arthritis-cognitive impairment linkage. RESULTS: The prevalence rates of cognitive impairment and arthritis of the older adults were 28.9% and 12.1%, respectively. Compared to those without arthritis, participants with arthritis were at a higher risk of cognitive impairment (OR = 1.322, 95%CI: 1.022-1.709) after adjustment for socio-demographics, lifestyle behaviors, and mental health conditions. Serial mediation analyses indicated that depressive and anxiety symptoms co-played a serial mediating role in the association between arthritis and cognitive impairment (B1 = 0.025, 95%CI: 0.005-0.052; B2 = 0.050, 95%CI: 0.021-0.086). CONCLUSIONS: Arthritis may heighten cognitive impairment risk in Chinese older adults, and the relationship was potentially mediated by depressive and anxiety symptoms. Future interventions should be considered, integrating mental health assessments into arthritis care frameworks and being alert to possible cognitive impairment.


Assuntos
Ansiedade , Artrite , Disfunção Cognitiva , Depressão , Humanos , Idoso , Masculino , Feminino , China/epidemiologia , Disfunção Cognitiva/epidemiologia , Artrite/epidemiologia , Ansiedade/epidemiologia , Depressão/epidemiologia , Prevalência , Idoso de 80 Anos ou mais , Comorbidade , Inquéritos Epidemiológicos , População do Leste Asiático
15.
J Inherit Metab Dis ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227307

RESUMO

Late-onset Pompe disease (LOPD) is caused by a genetic deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA), leading to progressive limb-girdle weakness and respiratory impairment. The insidious onset of non-specific early symptoms often prohibits timely diagnosis. This study aimed to validate the high-risk screening criteria for LOPD in the Chinese population. A total of 726 patients were included, including 96 patients under 14 years of age. Dried blood spots (DBS) and tandem mass spectrometry (MS/MS) were employed to evaluate serum GAA activity. Forty-four patients exhibited a decreased GAA activity, 16 (2.2%) of which were confirmed as LOPD by genetic testing. Three previously unreported GAA mutations were also identified. The median diagnostic delay was shortened to 3 years, which excelled the previous retrospective studies. At diagnosis, most patients exhibited impaired respiratory function and/or limb-girdle weakness. Elevated serum creatine kinase (CK) levels were more frequently observed in patients who manifested before age 16. Overall, high-risk screening is a feasible and efficient method to identify LOPD patients at an early stage. Patients over 1 year of age with either weakness in axial and/or proximal limb muscles, or unexplained respiratory distress shall be subject to GAA enzymatic test, while CK levels above 2 times the upper normal limit shall be an additional criterion for patients under 16. This modified high-risk screening criteria for LOPD requires further validation in larger Chinese cohorts.

16.
J Org Chem ; 89(4): 2448-2458, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38275288

RESUMO

An operationally simple and green protocol using a NiSO4·6H2O/cationic 2,2'-bipyridyl ligand system as a water-soluble catalyst for the coupling of arylboronic acids with (2-haloallyl)phosphonates and (2-haloallyl)sulfones in water under air was developed. The reaction was performed at 120 °C with arylboronic acids (2 mmol) and (2-haloallyl)phosphonates or sulfones (1 mmol) in the presence of 5 mol % of the Ni catalytic system in a basic aqueous solution for 1 h, giving the corresponding 2-aryl allyl phosphonates or sulfones in good to excellent yields. This reaction features the use of an abundant transition metal as a catalyst in water and exhibits high functional group tolerance, rendering it an eco-friendly procedure.

17.
J Pineal Res ; 76(1): e12929, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047407

RESUMO

Cholestatic liver disease is characterized by disturbances in the intestinal microbiota and excessive accumulation of toxic bile acids (BA) in the liver. Melatonin (MT) can improve liver diseases. However, the underlying mechanism remains unclear. This study aimed to explore the mechanism of MT on hepatic BA synthesis, liver injury, and fibrosis in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed and Mdr2-/- mice. MT significantly improved hepatic injury and fibrosis with a significant decrease in hepatic BA accumulation in DDC-fed and Mdr2-/- mice. MT reprogramed gut microbiota and augmented fecal bile salt hydrolase activity, which was related to increasing intestinal BA deconjugation and fecal BA excretion in both DDC-fed and Mdr2-/- mice. MT significantly activated the intestinal farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF-15) axis and subsequently inhibited hepatic BA synthesis in DDC-fed and Mdr2-/- mice. MT failed to improve DDC-induced liver fibrosis and BA synthesis in antibiotic-treated mice. Furthermore, MT provided protection against DDC-induced liver injury and fibrosis in fecal microbiota transplantation mice. MT did not decrease liver injury and fibrosis in DDC-fed intestinal epithelial cell-specific FXR knockout mice, suggesting that the intestinal FXR mediated the anti-fibrosis effect of MT. In conclusion, MT ameliorates cholestatic liver diseases by remodeling gut microbiota and activating intestinal FXR/FGF-15 axis-mediated inhibition of hepatic BA synthesis and promotion of BA excretion in mice.


Assuntos
Colestase , Hepatopatias , Melatonina , Camundongos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Fígado/metabolismo , Colestase/tratamento farmacológico , Colestase/metabolismo , Colestase/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/farmacologia , Camundongos Knockout , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL
18.
Physiol Plant ; 176(2): e14288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38644531

RESUMO

Heat shock protein 20 (Hsp20) is a small molecule heat shock protein that plays an important role in plant growth, development, and stress resistance. Little is known about the function of Hsp20 family genes in apple (Malus domestica). Here, we performed a genome-wide analysis of the apple Hsp20 gene family, and a total of 49 Hsp20s genes were identified from the apple genome. Phylogenetic analysis revealed that the 49 genes were divided into 11 subfamilies, and MdHsp18.2b, a member located in the CI branch, was selected as a representative member for functional characterization. Treatment with NaCl and Botryosphaeria dothidea (B. dothidea), the causal agent of apple ring rot disease, significantly induced MdHsp18.2b transcription level. Further analysis revealed that overexpressing MdHsp18.2b reduced the resistance to salt stress but enhanced the resistance to B. dothidea infection in apple calli. Moreover, MdHsp18.2b positively regulated anthocyanin accumulation in apple calli. Physiology assays revealed that MdHsp18.2b promoted H2O2 production, even in the absence of stress factors, which might contribute to its functions in response to NaCl and B. dothidea infection. Hsps usually function as homo- or heterooligomers, and we found that MdHsp18.2b could form a heterodimer with MdHsp17.9a and MdHsp17.5, two members from the same branch with MdHsp18.2b in the phylogenetic tree. Therefore, we identified 49 Hsp20s genes from the apple genome and found that MdHsp18.2b was involved in regulating plant resistance to salt stress and B. dothidea infection, as well as in regulating anthocyanin accumulation in apple calli.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP20 , Malus , Filogenia , Doenças das Plantas , Proteínas de Plantas , Malus/genética , Malus/microbiologia , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Proteínas de Choque Térmico HSP20/genética , Proteínas de Choque Térmico HSP20/metabolismo , Ascomicetos/fisiologia , Ascomicetos/genética , Ascomicetos/patogenicidade , Família Multigênica , Resistência à Doença/genética , Antocianinas/metabolismo
19.
J Pept Sci ; : e3628, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950972

RESUMO

Cell-penetrating peptides (CPPs) with better biomolecule delivery properties will expand their clinical applications. Using the MLCPP2.0 machine algorithm, we screened multiple candidate sequences with potential cellular uptake ability from the nuclear localization signal/nuclear export signal database and verified them through cell-penetrating fluorescent tracing experiments. A peptide (NCR) derived from the Rev protein of the caprine arthritis-encephalitis virus exhibited efficient cell-penetrating activity, delivering over four times more EGFP than the classical CPP TAT, allowing it to accumulate in lysosomes. Structural and property analysis revealed that a high hydrophobic moment and an appropriate hydrophobic region contribute to the high delivery activity of NCR. Trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, could improve its anti-tumor activity by enhancing targeted delivery efficiency and increasing lysosomal drug delivery. This study designed a new NCR vector to non-covalently bind T-DM1 by fusing domain Z, which can specifically bind to the Fc region of immunoglobulin G and effectively deliver T-DM1 to lysosomes. MTT results showed that the domain Z-NCR vector significantly enhanced the cytotoxicity of T-DM1 against HER2-positive tumor cells while maintaining drug specificity. Our results make a useful attempt to explore the potential application of CPP as a lysosome-targeted delivery tool.

20.
Mol Breed ; 44(1): 4, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225950

RESUMO

Improving quality is an essential goal of rice breeding and production. However, rice quality is not solely determined by genotype, but is also influenced by the environment. Phenotype plasticity refers to the ability of a given genotype to produce different phenotypes under different environmental conditions, which can be a representation of the stability of traits. Seven quality traits of 141 hybrid combinations, deriving from the test-crossing of 7 thermosensitive genic male sterile (TGMS) and 25 restorer lines, were evaluated at 5 trial sites with intermittent sowing of three to five in Southern China. In the Yangtze River Basin, it was observed that delaying the sowing time of hybrid rice combinations leads to an improvement in their overall quality. Twelve parents were identified to have lower plasticity general combing ability (GCA) values with increased ability to produce hybrids with a more stable quality. The parents with superior quality tend to exhibit lower GCA values for plasticity. The genome-wide association study (GWAS) identified 13 and 15 quantitative trait loci (QTLs) associated with phenotype plasticity and BLUP measurement, respectively. Notably, seven QTLs simultaneously affected both phenotype plasticity and BLUP measurement. Two cloned rice quality genes, ALK and GL7, may be involved in controlling the plasticity of quality traits in hybrid rice. The direction of the genetic effect of the QTL6 (ALK) on alkali spreading value (ASV) plasticity varies in different cropping environments. This study provides novel insights into the dynamic genetic basis of quality traits in response to different cropping regions, cultivation practices, and changing climates. These findings establish a foundation for precise breeding and production of stable and high-quality rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01442-3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA