Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Gastroenterol ; 57(3): 208-220, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35018527

RESUMO

BACKGROUND: Mutations in GNAS drive pancreatic tumorigenesis and frequently occur in intraductal papillary mucinous neoplasm (IPMN); however, their value as a therapeutic target is yet to be determined. This study aimed at evaluating the involvement of mutant GNAS in tumor aggressiveness in established pancreatic cancer. METHODS: CRISPR/Cas9-mediated GNAS R201H silencing was performed using human primary IPMN-associated pancreatic cancer cells. The role of oncogenic GNAS in tumor maintenance was evaluated by conducting cell culture and xenograft experiments, and western blotting and transcriptome analyses were performed to uncover GNAS-driven signatures. RESULTS: Xenografts of GNAS wild-type cells were characterized by a higher Ki-67 labeling index relative to GNAS-mutant cells. Phenotypic alterations in the GNAS wild-type tumors resulted in a significant reduction in mucin production accompanied by solid with massive stromal components. Transcriptional profiling suggested an apparent conflict of mutant GNAS with KRAS signaling. A significantly higher Notch intercellular domain (NICD) was observed in the nuclear fraction of GNAS wild-type cells. Meanwhile, inhibition of protein kinase A (PKA) induced NICD in GNAS-mutant IPMN cells, suggesting that NOTCH signaling is negatively regulated by the GNAS-PKA pathway. GNAS wild-type cells were characterized by a significant invasive property relative to GNAS-mutant cells, which was mediated through the NOTCH regulatory pathway. CONCLUSIONS: Oncogenic GNAS induces mucin production, not only via MUC2 but also via MUC5AC/B, which may enlarge cystic lesions in the pancreas. The mutation may also limit tumor aggressiveness by attenuating NOTCH signaling; therefore, such tumor-suppressing effects must be considered when therapeutically inhibiting the GNAS pathway.


Assuntos
Carcinoma Ductal Pancreático , Cromograninas , Subunidades alfa Gs de Proteínas de Ligação ao GTP , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Humanos , Mutação , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA