Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(14): e2115083119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344438

RESUMO

SignificanceScramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Glicosilfosfatidilinositóis , Retículo Endoplasmático/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Lipogênese , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
2.
Cell ; 139(2): 352-65, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837036

RESUMO

Many eukaryotic proteins are attached to the cell surface via glycosylphosphatidylinositol (GPI) anchors. How GPI-anchored proteins (GPI-APs) are trafficked from the endoplasmic reticulum (ER) to the cell surface is poorly understood, but the GPI moiety has been postulated to function as a signal for sorting and transport. Here, we established mutant cells that were selectively defective in transport of GPI-APs from the ER to the Golgi. We identified a responsible gene, designated PGAP5 (post-GPI-attachment to proteins 5). PGAP5 belongs to a dimetal-containing phosphoesterase family and catalyzed the remodeling of the glycan moiety on GPI-APs. PGAP5 catalytic activity is a prerequisite for the efficient exit of GPI-APs from the ER. Our data demonstrate that GPI glycan acts as an ER-exit signal and suggest that glycan remodeling mediated by PGAP5 regulates GPI-AP transport in the early secretory pathway.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Polissacarídeos/metabolismo , Animais , Glicoproteínas/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Humanos , Camundongos , Diester Fosfórico Hidrolases/genética
3.
J Sci Food Agric ; 104(9): 5603-5613, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38363126

RESUMO

BACKGROUND: Acidic lipases with high catalytic activities under acidic conditions have important application values in the food, feed and pharmaceutical industries. However, the availability of acidic lipases is still the main obstacle to their industrial applications. Although a novel acidic lipase Rasamsonia emersonii (LIPR) was heterologously expressed in Escherichia coli, the expression level was unsatisfactory. RESULTS: To achieve the high-efficiency expression and secretion of LIPR in Pichia pastoris GS115, the combinatorial optimization strategy was adopted including gene codon preference, signal peptide, molecular chaperone co-expression and disruption of vacuolar sorting receptor VPS10. The activity of the combinatorial optimization engineered strain in a shake flask reached 1480 U mL-1, which was 8.13 times greater than the P. pastoris GS115 parental strain. After high-density fermentation in a 5-L bioreactor, the highest enzyme activity reached as high as 11 820 U mL-1. LIPR showed the highest activity at 40 °C and pH 4.0 in the presence of Ca2+ ion. LIPR exhibited strong tolerance to methanol, indicating its potential application in biodiesel biosynthesis. Moreover, the gastrointestinal digestion simulation results demonstrated that LIPR was tolerant to pepsin and trypsin, but its activity was inhibited by sodium taurodeoxycholate. CONCLUSION: This study provided an effective approach for the high expression of acidic lipase LIPR. LIPR was more appropriate for lipid digestion in the stomach than in intestine according to the gastrointestinal digestion simulation results. © 2024 Society of Chemical Industry.


Assuntos
Digestão , Proteínas Fúngicas , Lipase , Lipase/genética , Lipase/metabolismo , Lipase/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/enzimologia , Concentração de Íons de Hidrogênio , Saccharomycetales/genética , Saccharomycetales/enzimologia , Saccharomycetales/metabolismo , Expressão Gênica , Estabilidade Enzimática , Pichia/genética , Pichia/metabolismo , Humanos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Modelos Biológicos , Fermentação
4.
J Biol Chem ; 298(10): 102444, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055406

RESUMO

Newly synthesized proteins in the secretory pathway, including glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs), need to be correctly targeted and imported into the endoplasmic reticulum (ER) lumen. GPI-APs are synthesized in the cytosol as preproproteins, which contain an N-terminal signal sequence (SS), mature protein part, and C-terminal GPI-attachment sequence (GPI-AS), and translocated into the ER lumen where SS and GPI-AS are removed, generating mature GPI-APs. However, how various GPI-APs are translocated into the ER lumen in mammalian cells is unclear. Here, we investigated the ER entry pathways of GPI-APs using a panel of KO cells defective in each signal recognition particle-independent ER entry pathway-namely, Sec62, GET, or SND pathway. We found GPI-AP CD59 largely depends on the SND pathway for ER entry, whereas prion protein (Prion) and LY6K depend on both Sec62 and GET pathways. Using chimeric Prion and LY6K constructs in which the N-terminal SS or C-terminal GPI-AS was replaced with that of CD59, we revealed that the hydrophobicity of the SSs and GPI-ASs contributes to the dependence on Sec62 and GET pathways, respectively. Moreover, the ER entry route of chimeric Prion constructs with the C-terminal GPI-ASs replaced with that of CD59 was changed to the SND pathway. Simultaneously, their GPI structures and which oligosaccharyltransferase isoforms modify the constructs were altered without any amino acid change in the mature protein part. Taking these findings together, this study revealed N- and C-terminal sequences of GPI-APs determine the selective ER entry route, which in turn regulates subsequent maturation processes of GPI-APs.


Assuntos
Retículo Endoplasmático , Proteínas Ligadas por GPI , Glicosilfosfatidilinositóis , Sinais Direcionadores de Proteínas , Humanos , Retículo Endoplasmático/metabolismo , Glicosilação , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Príons/química , Príons/metabolismo , Transporte Proteico
5.
Yi Chuan ; 45(8): 669-683, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37609818

RESUMO

In human cells, there are more than 146 glycosylphosphatidylinositol-anchored proteins (GPI-APs), including receptors, ligands, adhesion molecules and enzymes. The proteins are associated with membrane microdomains called lipid rafts through GPI, and plays a variety of important biological functions. At present, plenty of studies have been carried out on the biosynthesis of GPI-APs. The biosynthesis of GPI-APs requires at least 20 steps, and more than 40 GPI biosynthetic genes have been identified. However, it remains unclear how expression of GPI-AP related genes is regulated in normal and cancer tissues. In this study, we utilized gene expression data from both the TCGA database and GTEx portal to analysis the gene expression involved in GPI-AP biosynthesis and encoding GPI-APs in normal and cancer tissues. In order to perform a comprehensive analysis, we employed the GlycoMaple, a tool that is specifically designed to analyze glycosylation pathways. The results showed that compared with normal tissues, the expression of genes involved in GPI-AP biosynthesis in cancer tissues such as early glioma, glioblastoma multiforme, pancreatic cancer, testicular germ cell carcinoma, skin primary cutaneous melanoma and skin metastatic cutaneous melanoma, was changed significantly. Particularly, the expression of PIGY in these six cancers was increased. In addition, the expression of CD14, a GPI-AP gene, was increased in these six cancers. The expression of GAS1, GPC2 and GPC4 was increased only in early glioma and glioblastoma multiforme indicating that some GPI-APs such as GAS1 can be used as biomarkers of glioma. This study provides new insights into the expression of GPI-AP related genes in normal and cancer tissues, and lays a solid foundation for the development of GPI-APs as biomarkers.


Assuntos
Glioblastoma , Glioma , Melanoma , Neoplasias Cutâneas , Humanos , Glicosilfosfatidilinositóis/genética , Melanoma Maligno Cutâneo
6.
Hum Genet ; 141(8): 1423-1429, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35107634

RESUMO

Glycosylphosphatidylinositol (GPI) functions to anchor certain proteins to the cell surface. Although defects in GPI biosynthesis can result in a wide range of phenotypes, most affected patients present with neurological abnormalities and their diseases are grouped as inherited-GPI deficiency disorders. We present two siblings with global developmental delay, brain anomalies, hypotonia, and contractures. Exome sequencing revealed a homozygous variant, NM_001035005.4:c.90dupC (p.Phe31Leufs*3) in C18orf32, a gene not previously associated with any disease in humans. The encoded protein is known to be important for GPI-inositol deacylation. Knockout of C18orf32 in HEK293 cells followed by a transfection rescue assay revealed that the PIPLC (Phosphatidylinositol-Specific Phospholipase C) sensitivity of GPI-APs (GPI-anchored proteins) was restored only by the wild type and not the mutant C18orf32. Immunofluorescence revealed that the mutant C18orf32 was localized to the endoplasmic reticulum and was also found as aggregates in the nucleus. In conclusion, we identified a pathogenic variant in C18orf32 as the cause of a novel autosomal recessive neurodevelopmental disorder with hypotonia and contractures. Our results demonstrate the importance of C18orf32 in the biosynthesis of GPI-anchors, the molecular impact of the variant on the protein function, and add a novel candidate gene to the existing repertoire of genes implicated in neurodevelopmental disorders.


Assuntos
Contratura , Hipotonia Muscular , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Contratura/genética , Contratura/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Células HEK293 , Humanos , Hipotonia Muscular/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo
7.
J Biol Chem ; 295(48): 16393-16410, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32967966

RESUMO

The protein folding and lipid moiety status of glycosylphosphatidylinositol-anchored proteins (GPI-APs) are monitored in the endoplasmic reticulum (ER), with calnexin playing dual roles in the maturation of GPI-APs. In the present study, we investigated the functions of calnexin in the quality control and lipid remodeling of GPI-APs in the ER. By directly binding the N-glycan on proteins, calnexin was observed to efficiently retain GPI-APs in the ER until they were correctly folded. In addition, sufficient ER retention time was crucial for GPI-inositol deacylation, which is mediated by post-GPI attachment protein 1 (PGAP1). Once the calnexin/calreticulin cycle was disrupted, misfolded and inositol-acylated GPI-APs could not be retained in the ER and were exposed on the plasma membrane. In calnexin/calreticulin-deficient cells, endogenous GPI-anchored alkaline phosphatase was expressed on the cell surface, but its activity was significantly decreased. ER stress induced surface expression of misfolded GPI-APs, but proper GPI-inositol deacylation occurred due to the extended time that they were retained in the ER. Our results indicate that calnexin-mediated ER quality control systems for GPI-APs are necessary for both protein folding and GPI-inositol deacylation.


Assuntos
Calnexina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Oligossacarídeos/metabolismo , Dobramento de Proteína , Calnexina/genética , Membrana Celular/genética , Retículo Endoplasmático/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oligossacarídeos/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
8.
J Biol Chem ; 295(42): 14501-14509, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32816994

RESUMO

PGAP6, also known as TMEM8A, is a phospholipase A2 with specificity to glycosylphosphatidylinositol (GPI) and expressed on the surface of various cells. CRIPTO, a GPI-anchored co-receptor for a morphogenic factor Nodal, is a sensitive substrate of PGAP6. PGAP6-mediated shedding of CRIPTO plays a critical role in an early stage of embryogenesis. In contrast, CRYPTIC, a close family member of CRIPTO, is resistant to PGAP6. In this report, chimeras between CRIPTO and CRYPTIC and truncate mutants of PGAP6 were used to demonstrate that the Cripto-1/FRL1/Cryptic domain of CRIPTO is recognized by an N-terminal domain of PGAP6 for processing. We also report that among 56 human GPI-anchored proteins tested, only glypican 3, prostasin, SPACA4, and contactin-1, in addition to CRIPTO, are sensitive to PGAP6, indicating that PGAP6 has a narrow specificity toward various GPI-anchored proteins.


Assuntos
Glicoproteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Mutagênese , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores de Superfície Celular/metabolismo , Serina Endopeptidases/metabolismo , Espermatozoides/metabolismo , Especificidade por Substrato , Testículo/metabolismo
9.
Molecules ; 26(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34576938

RESUMO

Glycosylphosphatidylinositol (GPI) anchor modification is a posttranslational modification of proteins that has been conserved in eukaryotes. The biosynthesis and transfer of GPI to proteins are carried out in the endoplasmic reticulum. Attachment of GPI to proteins is mediated by the GPI-transamidase (GPI-TA) complex, which recognizes and cleaves the C-terminal GPI attachment signal of precursor proteins. Then, GPI is transferred to the newly exposed C-terminus of the proteins. GPI-TA consists of five subunits: PIGK, GPAA1, PIGT, PIGS, and PIGU, and the absence of any subunit leads to the loss of activity. Here, we analyzed functionally important residues of the five subunits of GPI-TA by comparing conserved sequences among homologous proteins. In addition, we optimized the purification method for analyzing the structure of GPI-TA. Using purified GPI-TA, preliminary single particle images were obtained. Our results provide guidance for the structural and functional analysis of GPI-TA.


Assuntos
Aciltransferases/química , Aciltransferases/genética , Aciltransferases/metabolismo , Aminoácidos/genética , Aciltransferases/isolamento & purificação , Microscopia Crioeletrônica , Detergentes/química , Células HEK293 , Humanos , Mutação , Conformação Proteica , Subunidades Proteicas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Cell Struct Funct ; 45(1): 77-92, 2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404555

RESUMO

Endocytic cargos are transported to recycling endosomes (RE) but how these sorting platforms are generated is not well understood. Here we describe our biochemical and live imaging studies of the conserved MON2-DOPEY complex in RE formation. MON2 mainly co-localized with RE marker RAB4B in peripheral dots and perinuclear region. The peripheral RE approached, interacted with, and separated from sorting nexin 3 (SNX3)-positive early endosomes (EE). Membrane-bound DOPEY2 was recruited to RE dependent upon MON2 expression, and showed binding abilities to kinesin and dynein/dynactin motor proteins. MON2-knockout impaired segregation of RE from EE and led to a decreased tubular recycling endosomal network, whereas RE was accumulated at perinuclear regions in DOPEY2-knockout cells. MON2 depletion also impaired intracellular transferrin receptor recycling, as well as retrograde transport of Wntless during its passage through RE before delivery from EE to the Golgi. Together, these data suggest that the MON2 drives separation of RE from EE and is required for efficient transport of endocytic cargo molecules.Key words: membrane trafficking, MON2, recycling endosomes, Wntless.


Assuntos
Endossomos/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , ATPases Translocadoras de Prótons/metabolismo , Endocitose/fisiologia , Humanos , Proteínas de Transporte Vesicular/metabolismo , Rede trans-Golgi/metabolismo
11.
J Biol Chem ; 294(13): 5038-5049, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30728244

RESUMO

Glycosylphosphatidylinositols (GPIs) are linked to many cell-surface proteins, anchor these proteins in the membrane, and are well characterized. However, GPIs that exist in the free form on the mammalian cell surface remain largely unexplored. To investigate free GPIs in cultured cell lines and mouse tissues, here we used the T5-4E10 mAb (T5 mAb), which recognizes unlinked GPIs having an N-acetylgalactosamine (GalNAc) side chain linked to the first mannose at the nonreducing terminus. We detected free GPIs bearing the GalNAc side chain on the surface of Neuro2a and CHO, but not of HEK293, K562, and C2C12 cells. Furthermore, free GPIs were present in mouse pons, medulla oblongata, spinal cord, testis, epididymis, and kidney. Using a panel of Chinese hamster ovary cells defective in both GPI-transamidase and GPI remodeling pathway, we demonstrate that free GPIs follow the same structural remodeling pathway during passage from the endoplasmic reticulum to the plasma membrane as do protein-linked GPI. Specifically, free GPIs underwent post-GPI attachment to protein 1 (PGAP1)-mediated inositol deacylation, PGAP5-mediated removal of the ethanolamine phosphate from the second mannose, and PGAP3- and PGAP2-mediated fatty acid remodeling. Moreover, T5 mAb recognized free GPIs even if the inositol-linked acyl chain or ethanolamine-phosphate side chain linked to the second mannose is not removed. In contrast, addition of a fourth mannose by phosphatidylinositol glycan anchor biosynthesis class Z (PIGZ) inhibited T5 mAb-mediated detection of free GPIs. Our results indicate that free GPIs are normal components of the plasma membrane in some tissues and further characterize free GPIs in mammalian cells.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Animais , Células CHO , Linhagem Celular , Membrana Celular/química , Cricetulus , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Glicosilfosfatidilinositóis/análise , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
12.
Biochem Soc Trans ; 48(3): 1129-1138, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32573677

RESUMO

Glycosylphosphatidylinositol (GPI) is a glycolipid added to the C-terminus of a large variety of proteins in eukaryotes, thereby anchoring these proteins to the cell surface. More than 150 different human proteins are modified with GPI, and GPI-anchored proteins (GPI-APs) play critical roles in embryogenesis, neurogenesis, immunity, and fertilization. GPI-APs are biosynthesized in the endoplasmic reticulum (ER) and transported to the plasma membrane via the Golgi apparatus. During transport, GPI-APs undergo structural remodeling that is important for the efficient folding and sorting of GPI-APs. Asparagine-linked glycan-dependent folding and deacylation by PGAP1 work together to ensure that correctly folded GPI-APs are transported from the ER to the Golgi. Remodeling of the GPI lipid moiety is critical for the association of GPI-APs with lipid rafts. On the cell surface, certain GPI-APs are cleaved by GPI cleavage enzymes and released from the membrane, a key event in processes such as spermatogenesis and neurogenesis. In this review, we discuss the enzymes involved in GPI-AP biosynthesis and the fate of GPI-APs in mammalian cells, with a focus on the assembly, folding, degradation, and cleavage of GPI-APs.


Assuntos
Membrana Celular/metabolismo , Retículo Endoplasmático/enzimologia , Glicosilfosfatidilinositóis/biossíntese , Complexo de Golgi/enzimologia , Animais , Humanos , Masculino , Microdomínios da Membrana/enzimologia , Proteínas de Membrana/metabolismo , Neurogênese , Domínios Proteicos , Dobramento de Proteína , Transporte Proteico , Espermatogênese
13.
Glycoconj J ; 37(6): 767-775, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926333

RESUMO

ß1,4-GalT1 is a type II membrane glycosyltransferase. It catalyzes the production of lactose in the lactating mammary gland and is supposedly also involved in the galactosylation of terminal GlcNAc of complex-type N-glycans. In-vitro studies of the bovine ß4Gal-T1 homolog showed that replacing a single residue of tyrosine with leucine at position 289 alters the donor substrate specificity from UDP-Gal to UDP-N-acetyl-galactosamine (UDP-GalNAc). The effect of this peculiar change in ß1,4GalT1 specificity was investigated in-vivo, by generating biallelic Tyr286Leu ß1,4GalT1 mice using CRISPR/Cas9 and crossbreeding. Mice bearing this mutation showed no appreciable defects when compared to wild-type mice, with the exception of biallelic female B4GALT1 mutant mice, which were unable to produce milk. The detailed comparison of wild-type and mutant mice derived from liver, kidney, spleen, and intestinal tissues showed only small differences in their N-glycan pattern. Comparable N-glycosylation was also observed in HEK 293 wild-type and knock-out B4GALT1 cells. Remarkably and in contrast to the other analyzed tissue samples, sialylation and galactosylation of serum N-glycans of biallelic Tyr286Leu GalT1 mice almost disappeared completely. These results suggest that ß1,4GalT1 plays a special role in the synthesis of serum N-glycans. The herein described Tyr286Leu ß1,4GalT1 mutant mouse model may, therefore, prove useful in the investigation of the mechanism which regulates tissue-dependent galactosylation.


Assuntos
Galactose/metabolismo , Galactosiltransferases/genética , Polissacarídeos/sangue , Animais , Bovinos , Feminino , Galactosiltransferases/metabolismo , Glicosilação , Células HEK293 , Humanos , Lactação/genética , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Polissacarídeos/genética , Especificidade por Substrato
14.
J Biol Chem ; 293(15): 5572-5584, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475941

RESUMO

Recombinant therapeutic proteins are becoming very important pharmaceutical agents for treating intractable diseases. Most biopharmaceutical proteins are produced in mammalian cells because this ensures correct folding and glycosylation for protein stability and function. However, protein production in mammalian cells has several drawbacks, including heterogeneity of glycans attached to the produced protein. In this study, we established cell lines with high-mannose-type N-linked, low-complexity glycans. We first knocked out two genes encoding Golgi mannosidases (MAN1A1 and MAN1A2) in HEK293 cells. Single knockout (KO) cells did not exhibit changes in N-glycan structures, whereas double KO cells displayed increased high-mannose-type and decreased complex-type glycans. In our effort to eliminate the remaining complex-type glycans, we found that knocking out a gene encoding the endoplasmic reticulum mannosidase I (MAN1B1) in the double KO cells reduced most of the complex-type glycans. In triple KO (MAN1A1, MAN1A2, and MAN1B1) cells, Man9GlcNAc2 and Man8GlcNAc2 were the major N-glycan structures. Therefore, we expressed two lysosomal enzymes, α-galactosidase-A and lysosomal acid lipase, in the triple KO cells and found that the glycans on these enzymes were sensitive to endoglycosidase H treatment. The N-glycan structures on recombinant proteins expressed in triple KO cells were simplified and changed from complex types to high-mannose types at the protein level. Our results indicate that the triple KO HEK293 cells are suitable for producing recombinant proteins, including lysosomal enzymes with high-mannose-type N-glycans.


Assuntos
Expressão Gênica , Técnicas de Silenciamento de Genes , Complexo de Golgi/enzimologia , Manosidases , Glicosilação , Complexo de Golgi/genética , Células HEK293 , Humanos , Manosidases/genética , Manosidases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
15.
FASEB J ; 32(5): 2492-2506, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29273674

RESUMO

Asparagine ( N)-linked glycosylation requires the ordered, stepwise synthesis of lipid-linked oligosaccharide (LLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (Glc3Man9Gn2-PDol) on the endoplasmic reticulum. The fourth and fifth steps of LLO synthesis are catalyzed by Alg2, an unusual mannosyltransferase (MTase) with two different MTase activities; Alg2 adds both an α1,3- and α1,6-mannose onto ManGlcNAc2-PDol to form the trimannosyl core Man3GlcNAc2-PDol. The biochemical properties of Alg2 are controversial and remain undefined. In this study, a liquid chromatography/mass spectrometry-based quantitative assay was established and used to analyze the MTase activities of purified yeast Alg2. Alg2-dependent Man3GlcNAc2-PDol production relied on net-neutral lipids with a propensity to form bilayers. We further showed addition of the α1,3- and α1,6-mannose can occur independently in either order but at differing rates. The conserved C-terminal EX7E motif, N-terminal cytosolic tail, and 3 G-rich loop motifs in Alg2 play crucial roles for these activities, both in vitro and in vivo. These findings provide insight into the unique bifunctionality of Alg2 during LLO synthesis and lead to a new model in which alternative, independent routes exist for Alg2 catalysis of the trimannosyl core oligosaccharide.-Li, S.-T., Wang, N., Xu, X.-X., Fujita, M., Nakanishi, H., Kitajima, T., Dean, N., Gao, X.-D. Alternative routes for synthesis of N-linked glycans by Alg2 mannosyltransferase.


Assuntos
Polissacarídeos Fúngicos/química , Bicamadas Lipídicas/química , Manosiltransferases/química , Modelos Moleculares , Oligossacarídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Polissacarídeos Fúngicos/genética , Polissacarídeos Fúngicos/metabolismo , Glicosilação , Bicamadas Lipídicas/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Oligossacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade
16.
Glycobiology ; 28(10): 741-753, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939232

RESUMO

In eukaryotes, the biosynthesis of a highly conserved dolichol-linked oligosaccharide (DLO) precursor Glc3Man9GlcNAc2-pyrophosphate-dolichol (PP-Dol) begins on the cytoplasmic face of the endoplasmic reticulum (ER) and ends within the lumen. Two functionally distinguished heteromeric glycosyltransferase (GTase) complexes are responsible for the cytosolic DLO assembly. Alg1, a ß-1, 4 mannosyltransferase (MTase) physically interacts with Alg2 and Alg11 proteins to form the multienzyme complex which catalyzes the addition of all five mannose to generate the Man5GlcNAc2-PP-Dol intermediate. Despite the fact that Alg1 plays a central role in the formation of the multi-MTase has been confirmed, the topological information of Alg1 including the molecular mechanism of membrane association are still poorly understood. Using a combination of bioinformatics and biological approaches, we have undertaken a structural and functional study on Alg1 protein, in which the enzymatic activities of Alg1 and its variants were monitored by a complementation assay using the GALpr-ALG1 yeast strain, and further confirmed by a liquid chromatography-mass spectrometry-based in vitro quantitative assay. Computational and experimental evidence confirmed Alg1 shares structure similarity with Alg13/14 complex, which has been defined as a membrane-associated GT-B GTase. Particularly, we provide clear evidence that the N-terminal transmembrane domain including the following positively charged amino acids and an N-terminal amphiphilic-like α helix domain exposed on the protein surface strictly coordinate the Alg1 orientation on the ER membrane. This work provides detailed membrane topology of Alg1 and further reveals its biological importance at the spatial aspect in coordination of cytosolic DLO biosynthesis.


Assuntos
Membrana Celular/metabolismo , Dolicóis/biossíntese , Manosiltransferases/metabolismo , Oligossacarídeos/biossíntese , Saccharomyces cerevisiae/metabolismo , Membrana Celular/química , Dolicóis/química , Manosiltransferases/química , Manosiltransferases/genética , Oligossacarídeos/química , Conformação Proteica , Saccharomyces cerevisiae/citologia
17.
Biosci Biotechnol Biochem ; 82(9): 1497-1507, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29882469

RESUMO

Glycoengineered yeast cells, which express human-compatible glycan structures, are particularly attractive host cells to produce therapeutic glycoproteins. Disruption of OCH1 gene, which encodes an α-1,6-mannosyltransferase required for mannan-type N-glycan formation, is essential for the elimination of yeast-specific N-glycan structures. However, the gene disruption causes cell wall defects leading to growth defects. Here, we tried to identify factors to rescue the growth defects of och1Δ cells by in vivo mutagenesis using piggyBac (PB)-based transposon. We isolated a mutant strain, named 121, which could grow faster than parental och1Δ cells. The PB element was introduced into the promoter region of BEM4 gene and upregulated the BEM4 expression. Overexpression of BEM4 suppressed growth defects in och1Δ cells. The slow grow phenotypes were partially rescued by expression of Rho1p, whose function is regulated by Bem4p. Our results indicate that BEM4 would be useful to produce therapeutic proteins in glycoengineered yeast without the growth defects.


Assuntos
Elementos de DNA Transponíveis , Peptídeos e Proteínas de Sinalização Intracelular/genética , Manosiltransferases/genética , Glicoproteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Genes Bacterianos , Glicosilação , Humanos , Mutagênese , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas rho de Ligação ao GTP/genética
18.
Proteins ; 85(4): 764-770, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28066915

RESUMO

The p24 family proteins form homo- and hetero-oligomeric complexes for efficient transport of cargo proteins from the endoplasmic reticulum to the Golgi apparatus. It consists of four subfamilies (p24α, p24ß, p24γ, and p24δ). p24γ2 plays crucial roles in the selective transport of glycosylphosphatidylinositol-anchored proteins. Here, we determined the crystal structure of mouse p24γ2 Golgi dynamics (GOLD) domain at 2.8 Å resolution by the single anomalous diffraction method using intrinsic sulfur atoms. In spite of low sequence identity among p24 family proteins, p24γ2 GOLD domain assumes a ß-sandwich fold, similar to that of p24ß1 or p24δ1. An additional short α-helix is observed at the C-terminus of the p24γ2 GOLD domain. Intriguingly, p24γ2 GOLD domains crystallize as dimers, and dimer formation seems assisted by the short α-helix. Dimerization modes of GOLD domains are compared among p24 family proteins. Proteins 2017; 85:764-770. © 2016 Wiley Periodicals, Inc.


Assuntos
Modelos Moleculares , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Camundongos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios Proteicos , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
19.
J Lipid Res ; 57(1): 6-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26563290

RESUMO

Glycosylphosphatidylinositols (GPIs) act as membrane anchors of many eukaryotic cell surface proteins. GPIs in various organisms have a common backbone consisting of ethanolamine phosphate (EtNP), three mannoses (Mans), one non-N-acetylated glucosamine, and inositol phospholipid, whose structure is EtNP-6Manα-2Manα-6Manα-4GlNα-6myoinositol-P-lipid. The lipid part is either phosphatidylinositol of diacyl or 1-alkyl-2-acyl form, or inositol phosphoceramide. GPIs are attached to proteins via an amide bond between the C-terminal carboxyl group and an amino group of EtNP. Fatty chains of inositol phospholipids are inserted into the outer leaflet of the plasma membrane. More than 150 different human proteins are GPI anchored, whose functions include enzymes, adhesion molecules, receptors, protease inhibitors, transcytotic transporters, and complement regulators. GPI modification imparts proteins with unique characteristics, such as association with membrane microdomains or rafts, transient homodimerization, release from the membrane by cleavage in the GPI moiety, and apical sorting in polarized cells. GPI anchoring is essential for mammalian embryogenesis, development, neurogenesis, fertilization, and immune system. Mutations in genes involved in remodeling of the GPI lipid moiety cause human diseases characterized by neurological abnormalities. Yeast Saccharomyces cerevisiae has >60 GPI-anchored proteins (GPI-APs). GPI is essential for growth of yeast. In this review, we discuss biosynthesis of GPI-APs in mammalian cells and yeast with emphasis on the lipid moiety.


Assuntos
Glicosilfosfatidilinositóis/biossíntese , Glicosilfosfatidilinositóis/metabolismo , Lipídeos/biossíntese , Animais , Membrana Celular/metabolismo , Humanos , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo
20.
J Biol Chem ; 289(24): 16835-43, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24778190

RESUMO

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are group of proteins that depend on p24 cargo receptors for their transport from the endoplasmic reticulum to the Golgi apparatus. The GPI anchor is expected to act as a sorting and transport signal, but so far little is known about the recognition mechanism. In the present study we investigate the GPI-AP transport in cell knockdown of p24γ, the most diverse p24 subfamily. Knockdown of p24γ2 but not of other p24γ family members impaired the transport of a reporter GPI-AP. Restoration of the knockdown-induced phenotype using chimeric constructs between p24γ2 and the related p24γ1 further implied a role of the α-helical region of p24γ2 but not its GOLD domain in the specific binding of GPI-APs. We conclude that motifs in the membrane-adjacent α-helical region of p24γ2 are involved in recognition of GPI-APs and are consequently responsible for the incorporation of these proteins into coat protein complex II-coated transport vesicles.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células CHO , Canais de Cálcio , Cricetinae , Cricetulus , Humanos , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Canais de Cátion TRPV , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA