Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 78(3): 445-458.e6, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32197065

RESUMO

Paternal dietary conditions may contribute to metabolic disorders in offspring. We have analyzed the role of the stress-dependent epigenetic regulator cyclic AMP-dependent transcription factor 7 (ATF7) in paternal low-protein diet (pLPD)-induced gene expression changes in mouse liver. Atf7+/- mutations cause an offspring phenotype similar to that caused by pLPD, and the effect of pLPD almost vanished when paternal Atf7+/- mice were used. ATF7 binds to the promoter regions of ∼2,300 genes, including cholesterol biosynthesis-related and tRNA genes in testicular germ cells (TGCs). LPD induces ATF7 phosphorylation by p38 via reactive oxygen species (ROS) in TGCs. This leads to the release of ATF7 and a decrease in histone H3K9 dimethylation (H3K9me2) on its target genes. These epigenetic changes are maintained and induce expression of some tRNA fragments in spermatozoa. These results indicate that LPD-induced and ATF7-dependent epigenetic changes in TGCs play an important role in paternal diet-induced metabolic reprograming in offspring.


Assuntos
Fatores Ativadores da Transcrição/genética , Dieta com Restrição de Proteínas , Epigênese Genética , Fígado/fisiologia , Espermatozoides/fisiologia , Fatores Ativadores da Transcrição/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Histonas/metabolismo , Lisina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Fosforilação , Regiões Promotoras Genéticas
2.
Biochem Biophys Res Commun ; 608: 59-65, 2022 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-35390673

RESUMO

Cryotherapy is one of the most common treatments for trauma or fatigue in the field of sports medicine. However, the molecular biological effects of acute cold exposure on skeletal muscle remain unclear. Therefore, we used zebrafish, which have recently been utilized as an animal model for skeletal muscle, to comprehensively investigate and selectively clarify the time-course changes induced by cryotherapy. Zebrafish were exposed intermittently to cold stimulation three times for 15 min each. Thereafter, skeletal muscle samples were collected after 15 min and 1, 2, 4, and 6 h. mRNA sequencing revealed the involvement of trim63a, fbxo32, fbxo30a, and klhl38b in "protein ubiquitination" from the top 10 most upregulated genes. Subsequently, we examined the time-course changes of the four genes by quantitative PCR, and their expression peaked 2 h after cryotherapy and returned to baseline after 6 h. Moreover, the proteins encoded by trim63a and fbxo32 (muscle-specific RING finger protein 1 [MuRF1] and muscle atrophy F-box, respectively), which are known to be major genes encoding E3 ubiquitin ligases, were examined by western blotting, and MuRF1 expression displayed similar temporal changes as trim63a expression. These findings suggest that acute cold exposure transiently upregulates E3 ubiquitin ligases, especially MuRF1; thus, cryotherapy may contribute to the treatment of trauma or fatigue by promoting protein processing.


Assuntos
Proteínas Ligases SKP Culina F-Box , Peixe-Zebra , Animais , Resposta ao Choque Frio , Fadiga/metabolismo , Fadiga/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo , Regulação para Cima , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
3.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072586

RESUMO

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been rapidly increasing worldwide. A choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) has been used to create a mouse model of nonalcoholic steatohepatitis (NASH). There are some reports on the effects on mice of being fed a CDAHFD for long periods of 1 to 3 months. However, the effect of this diet over a short period is unknown. Therefore, we examined the effect of 1-week CDAHFD feeding on the mouse liver. Feeding a CDAHFD diet for only 1-week induced lipid droplet deposition in the liver with increasing activity of liver-derived enzymes in the plasma. On the other hand, it did not induce fibrosis or cirrhosis. Additionally, it was demonstrated that CDAHFD significantly impaired mitochondrial respiration with severe oxidative stress to the liver, which is associated with a decreasing mitochondrial DNA copy number and complex proteins. In the gene expression analysis of the liver, inflammatory and oxidative stress markers were significantly increased by CDAHFD. These results demonstrated that 1 week of feeding CDAHFD to mice induces steatohepatitis with mitochondrial dysfunction and severe oxidative stress, without fibrosis, which can partially mimic the early stage of NASH in humans.


Assuntos
Deficiência de Colina/complicações , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Gluconeogênese , Mediadores da Inflamação/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Lipogênese , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Fenótipo
4.
Phys Chem Chem Phys ; 16(35): 18955-65, 2014 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-25092019

RESUMO

The catalytic hydrogenation of 2,4-dinitroaniline using a 0.5 wt% Pt/TiO2 catalyst was investigated in a multiphase medium of tetrahydrofuran (THF) pressurized by CO2 at different pressures and at 323 K. When CO2 pressure was increased, the overall rate of hydrogenation simply decreased but the selectivity to the desired product of 4-nitro-1,2-phenylenediamine increased. The noticeable enhancement of the selectivity to 4-nitro-1,2-phenylenediamine can be explained by chemical reactivities of CO2 molecules. In situ high-pressure FTIR and molecular simulations demonstrate that the dissolved CO2 molecules may interact with amino groups of the substrate and weaken the intra-hydrogen bonding between the amino and 2-nitro groups, which results in the change in the relative reactivity of the two nitro groups, yielding the desired product in a higher selectivity. The change in the intra- and inter-molecular interactions between the substrate and CO2 molecules was theoretically examined by DFT calculations.

5.
Nat Commun ; 15(1): 4814, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862469

RESUMO

A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.


Assuntos
Antígenos CD36 , Ácidos Nucleicos Livres , DNA Mitocondrial , Voo Espacial , Ausência de Peso , DNA Mitocondrial/genética , DNA Mitocondrial/sangue , Humanos , Ácidos Nucleicos Livres/sangue , Animais , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Masculino , Astronautas , RNA/metabolismo , RNA/genética , Biópsia Líquida/métodos , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Feminino , Pessoa de Meia-Idade , Adulto
6.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37503219

RESUMO

Dynamic regulation of gene expression plays a key role in establishing the diverse neuronal cell types in the brain. Recent findings in genome biology suggest that three-dimensional (3D) genome organization has important, but mechanistically poorly understood functions in gene transcription. Beyond local genomic interactions between promoters and enhancers, we find that cerebellar granule neurons undergoing differentiation in vivo exhibit striking increases in long-distance genomic interactions between transcriptionally active genomic loci, which are separated by tens of megabases within a chromosome or located on different chromosomes. Among these interactions, we identify a nuclear subcompartment enriched for near-megabase long enhancers and their associated neuronal long genes encoding synaptic or signaling proteins. Neuronal long genes are differentially recruited to this enhancer-dense subcompartment to help shape the transcriptional identities of granule neuron subtypes in the cerebellum. SPRITE analyses of higher-order genomic interactions, together with IGM-based 3D genome modeling and imaging approaches, reveal that the enhancer-dense subcompartment forms prominent nuclear structures, which we term mega-enhancer bodies. These novel nuclear bodies reside in the nuclear periphery, away from other transcriptionally active structures, including nuclear speckles located in the nuclear interior. Together, our findings define additional layers of higher-order 3D genome organization closely linked to neuronal maturation and identity in the brain.

7.
Phys Chem Chem Phys ; 14(14): 4724-33, 2012 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-22395771

RESUMO

The formation and adsorption of CO from CO(2) and H(2) at high pressures were studied over alumina-supported noble metal catalysts (Pt, Pd, Rh, Ru) by in situ FTIR measurements. To examine the effects of surface structure of supported metal particles and water vapor on the CO adsorption, FTIR spectra were collected at 323 K with untreated and heat (673 K) treated catalysts in the absence and presence of water (H(2)O, D(2)O). It was observed that the adsorption of CO occurred on all the metal catalysts at high pressures, some CO species still remained adsorbed under ambient conditions after the high pressure FTIR measurements, and the frequencies of the adsorbed CO species were lower either for the heat treated samples or in the presence of water vapor. It is assumed that the CO absorption bands on atomically smoother surfaces appear at lower frequencies and that water molecules are adsorbed more preferentially on atomically rough surfaces rather than CO species.

8.
Oncol Rep ; 48(4)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36082807

RESUMO

The present study aimed to investigate the clinical and biological significance of Src­associated in mitosis 68 kDa (Sam68) in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis was performed on tissue samples obtained from 77 patients with OSCC. Univariate analysis revealed that the high expression of Sam68 was significantly correlated with advanced pathological T stage (P=0.01), positive lymphovascular invasion (P=0.01), and pathological cervical lymph node metastasis (P<0.01). Moreover, multivariate analysis demonstrated that the high expression of Sam68 was an independent predictive factor for cervical lymph node metastasis (odds ratio, 4.39; 95% confidence interval, 1.49­14.23; P<0.01). These results indicated that high Sam68 expression contributed to tumor progression, especially cervical lymph node metastasis, in OSCC. mRNA sequencing was also performed to assess the changes in the transcriptome between OSCC cells with Sam68 knockdown and control cells with the aim of elucidating the biological roles of Sam68. Gene Ontology enrichment analysis revealed that downregulated differentially expressed genes (DEGs) were concentrated in some biological processes related to epithelial­mesenchymal transition. Among these DEGs, it was established that vimentin was particularly downregulated in these cells. It was also confirmed that Sam68 knockdown reduced the motility of OSCC cells. Furthermore, the immunohistochemical study of vimentin identified the association between vimentin expression and Sam68 expression as well as cervical lymph node metastasis. In conclusion, the present study suggested that the high expression of Sam68 may contribute to metastasis by regulating vimentin expression and a motile mesenchymal phenotype in OSCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ligação a DNA , Neoplasias Bucais , Proteínas de Ligação a RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ligação a DNA/genética , Humanos , Metástase Linfática , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Fenótipo , Proteínas de Ligação a RNA/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Vimentina/genética
9.
Sports (Basel) ; 9(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34678915

RESUMO

Exosomal microRNA (miRNA) in plasma and urine has attracted attention as a novel diagnostic tool for pathological conditions. However, the mechanisms of miRNA dynamics in the exercise physiology field are not well understood in terms of monitoring sports performance. This pilot study aimed to reveal the miRNA dynamics in urine and plasma of full-marathon participants. Plasma and urine samples were collected from 26 marathon participants before, immediately after, 2 h after, and one day after a full marathon. The samples were pooled, and exosomal miRNAs were extracted and analyzed using next-generation sequencing. We determined that the exosomal miRNA expression profile changed under time dependency in full marathon. New uncharacterized exosomal miRNAs such as hsa-miR-582-3p and hsa-miR-199a-3p could be potential biomarkers reflecting physical stress of full marathon in plasma and urine. In addition, some muscle miRNAs in plasma and urine have supported the utility for monitoring physical stress. Furthermore, some inflammation-related exosomal miRNAs were useful only in plasma. These results suggest that these exosomal miRNAs in plasma and/or urine are highly sensitive biomarkers for physical stress in full marathons. Thus, our findings may yield valuable insights into exercise physiology.

10.
Genes (Basel) ; 12(5)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946330

RESUMO

Plasma cell-free DNA (cfDNA) is frequently analyzed using liquid biopsy to investigate cancer markers. We hypothesized that this concept might be applicable in exercise physiology. Here, we aimed to identify specific cfDNA (spcfDNA) sequences in the plasma of healthy humans using next-generation sequencing (NGS) and clearly define the dynamics regarding spcfDNA-fragment levels upon extreme exercises, such as running a full marathon. NGS analysis was performed using cfDNA of pooled plasma collected from healthy participants. We confirmed that the TaqMan-qPCR assay had high sensitivity and found that the spcfDNA sequence abundance was 16,600-fold higher than that in a normal genomic region. We then used the TaqMan-qPCR assay to investigate the dynamics of spcfDNA-fragment levels upon running a full marathon. The spcfDNA fragment levels were significantly increased post-marathon. Furthermore, spcfDNA fragment levels were strongly correlated with white blood cell and plasma myoglobin concentrations. These results suggest the spcfDNA fragments identified in this study were highly sensitive as markers of extreme physical stress. The findings of this study may provide new insights into exercise physiology and genome biology in humans.


Assuntos
Ácidos Nucleicos Livres/sangue , Corrida de Maratona/fisiologia , Adulto , Biomarcadores/sangue , Humanos , Masculino
11.
iScience ; 24(7): 102773, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34278272

RESUMO

As space travel becomes more accessible, it is important to understand the effects of spaceflight including microgravity, cosmic radiation, and psychological stress. However, the effect on offspring has not been well studied in mammals. Here we investigated the effect of 35 days spaceflight on male germ cells. Male mice that had experienced spaceflight exhibit alterations in binding of transcription factor ATF7, a regulator of heterochromatin formation, on promoter regions in testis, as well as altered small RNA expression in spermatozoa. Offspring of space-traveling males exhibit elevated hepatic expression of genes related to DNA replication. These results indicate that spaceflight has intergenerational effect.

12.
Commun Biol ; 4(1): 787, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168270

RESUMO

Microgravity induces skeletal muscle atrophy, particularly in the soleus muscle, which is predominantly composed of slow-twitch myofibre (type I) and is sensitive to disuse. Muscle atrophy is commonly known to be associated with increased production of reactive oxygen species. However, the role of NRF2, a master regulator of antioxidative response, in skeletal muscle plasticity during microgravity-induced atrophy, is not known. To investigate the role of NRF2 in skeletal muscle within a microgravity environment, wild-type and Nrf2-knockout (KO) mice were housed in the International Space Station for 31 days. Gene expression and histological analyses demonstrated that, under microgravity conditions, the transition of type I (oxidative) muscle fibres to type IIa (glycolytic) was accelerated in Nrf2-KO mice without affecting skeletal muscle mass. Therefore, our results suggest that NRF2 affects myofibre type transition during space flight.


Assuntos
Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Fator 2 Relacionado a NF-E2/fisiologia , Voo Espacial , Animais , Perfilação da Expressão Gênica , Glicólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/deficiência
13.
Genes (Basel) ; 12(8)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34440425

RESUMO

Despite the World Anti-Doping Agency (WADA) ban on gene doping in the context of advancements in gene therapy, the risk of EPO gene-based doping among athletes is still present. To address this and similar risks, gene-doping tests are being developed in doping control laboratories worldwide. In this regard, the present study was performed with two objectives: to develop a robust gene-doping mouse model with the human EPO gene (hEPO) transferred using recombinant adenovirus (rAdV) as a vector and to develop a detection method to identify gene doping by using this model. The rAdV including the hEPO gene was injected intravenously to transfer the gene to the liver. After injection, the mice showed significantly increased whole-blood red blood cell counts and increased expression of hematopoietic marker genes in the spleen, indicating successful development of the gene-doping model. Next, direct and potentially indirect proof of gene doping were evaluated in whole-blood DNA and RNA by using a quantitative PCR assay and RNA sequencing. Proof of doping could be detected in DNA and RNA samples from one drop of whole blood for approximately a month; furthermore, the overall RNA expression profiles showed significant changes, allowing advanced detection of hEPO gene doping.


Assuntos
Dopagem Esportivo , Eritropoetina/genética , Terapia Genética , Vetores Genéticos/genética , Adenoviridae/genética , Animais , Atletas , Eritropoetina/uso terapêutico , Vetores Genéticos/uso terapêutico , Humanos , Camundongos , Camundongos Transgênicos , Modelos Animais
14.
Sci Rep ; 11(1): 9168, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911096

RESUMO

Spaceflight causes a decrease in skeletal muscle mass and strength. We set two murine experimental groups in orbit for 35 days aboard the International Space Station, under artificial earth-gravity (artificial 1 g; AG) and microgravity (µg; MG), to investigate whether artificial 1 g exposure prevents muscle atrophy at the molecular level. Our main findings indicated that AG onboard environment prevented changes under microgravity in soleus muscle not only in muscle mass and fiber type composition but also in the alteration of gene expression profiles. In particular, transcriptome analysis suggested that AG condition could prevent the alterations of some atrophy-related genes. We further screened novel candidate genes to reveal the muscle atrophy mechanism from these gene expression profiles. We suggest the potential role of Cacng1 in the atrophy of myotubes using in vitro and in vivo gene transductions. This critical project may accelerate the elucidation of muscle atrophy mechanisms.


Assuntos
Regulação da Expressão Gênica , Músculo Esquelético/fisiologia , Atrofia Muscular/genética , Ausência de Peso , Adaptação Biológica/genética , Animais , Canais de Cálcio/genética , Linhagem Celular , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiopatologia , Voo Espacial
15.
Life (Basel) ; 10(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933026

RESUMO

Rodent models have been widely used as analogs for estimating spaceflight-relevant molecular mechanisms in human tissues. NASA GeneLab provides access to numerous spaceflight omics datasets that can potentially generate novel insights and hypotheses about fundamental space biology when analyzed in new and integrated fashions. Here, we performed a pilot study to elucidate space biological mechanisms across tissues by reanalyzing mouse RNA-sequencing spaceflight data archived on NASA GeneLab. Our results showed that clock gene expressions in spaceflight mice were altered compared with those in ground control mice. Furthermore, the results suggested that spaceflight promotes asynchrony of clock gene expressions between peripheral tissues. Abnormal circadian rhythms are associated not only with jet lag and sleep disorders but also with cancer, lifestyle-related diseases, and mental disorders. Overall, our findings highlight the importance of elucidating the causes of circadian rhythm disruptions using the unique approach of space biology research to one day potentially develop countermeasures that benefit humans on Earth and in space.

16.
Sci Rep ; 9(1): 7654, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31114014

RESUMO

Secondary lymphoid organs are critical for regulating acquired immune responses. The aim of this study was to characterize the impact of spaceflight on secondary lymphoid organs at the molecular level. We analysed the spleens and lymph nodes from mice flown aboard the International Space Station (ISS) in orbit for 35 days, as part of a Japan Aerospace Exploration Agency mission. During flight, half of the mice were exposed to 1 g by centrifuging in the ISS, to provide information regarding the effect of microgravity and 1 g exposure during spaceflight. Whole-transcript cDNA sequencing (RNA-Seq) analysis of the spleen suggested that erythrocyte-related genes regulated by the transcription factor GATA1 were significantly down-regulated in ISS-flown vs. ground control mice. GATA1 and Tal1 (regulators of erythropoiesis) mRNA expression was consistently reduced by approximately half. These reductions were not completely alleviated by 1 g exposure in the ISS, suggesting that the combined effect of space environments aside from microgravity could down-regulate gene expression in the spleen. Additionally, plasma immunoglobulin concentrations were slightly altered in ISS-flown mice. Overall, our data suggest that spaceflight might disturb the homeostatic gene expression of the spleen through a combination of microgravity and other environmental changes.


Assuntos
Fator de Transcrição GATA1/metabolismo , Voo Espacial , Baço/metabolismo , Transcriptoma , Animais , Regulação para Baixo , Eritropoese , Fator de Transcrição GATA1/genética , Camundongos , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Ausência de Peso/efeitos adversos
17.
Ultrason Sonochem ; 18(1): 54-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20634118

RESUMO

A novel method for the synthesis of nanocrystalline zinc oxide without any additive was developed using zinc acetate and 1,4-butanediol through sonication. The structure and morphology of prepared nanocrystalline zinc oxide was investigated by various techniques like TEM, XRD, EDAX, UV-Vis spectroscopy. The solvent 1,4-butanediol played a dual role of fuel as well as capping agent eliminating addition of any extraneous species. The results showed that using ultrasound sonication is green, cost effective compared to conventional wet chemical method for ZnO nanoparticle synthesis.


Assuntos
Nanoestruturas/química , Ultrassom , Óxido de Zinco/síntese química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Óxido de Zinco/química
18.
J Phys Chem A ; 109(19): 4419-24, 2005 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16833774

RESUMO

The hydrogenation of benzaldehyde and cinnamaldehyde has been studied with a 5% Pt/C catalyst in compressed CO(2). The effect of CO(2) pressure on the total conversion was found to be different between the two aldehydes. The total conversion of benzaldehyde merely decreases with increasing CO(2) pressure, while that of cinnamaldehyde shows a maximum at a certain pressure. High-pressure FTIR measurements indicate the existence of interactions of CO(2) with the aldehydes. The absorption of nu(C=O) red-shifts at increasing CO(2) pressure, and this red-shift is more significant for cinnamaldehyde than for benzaldehyde, indicating that the C=O bond of the former becomes more reactive than the latter. The difference in the mode of interactions of CO(2) with these aldehydes has also been indicated by changes of nu(C=O) of CO(2). Thus, the conversion of benzaldehyde will decrease with increasing CO(2) pressure because of a simple dilution by introducing a larger quantity of CO(2). For cinnamaldehyde, the conversion will increase at low pressures because of increasing interactions with CO(2) molecules (increasing the reactivity of the C=O bond) but decrease at high pressures because of the simple dilution effect, similar to the case of benzaldehyde. The dense CO(2) molecules are not likely to change the catalytic activity of supported Pt particles, which was previously suggested from optical absorption of supported fine metal (Au) particles in a compressed CO(2) medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA