Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Stem Cells ; 41(6): 552-559, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36943314

RESUMO

Skeletal muscle is mainly composed of multinucleated cells called myofibers and has excellent regenerative and adaptive abilities. These abilities are granted by muscle satellite cells (MuSCs), which are anatomically defined cells located between myofibers and basal lamina. In addition to myofibers and MuSCs, skeletal muscle contains several types of cells located in interstitial areas, such as mesenchymal progenitors. These cells are positive for platelet-derived growth factor receptor alpha and are called fibro/adipogenic progenitors (FAPs) or mesenchymal stromal cells. Although mesenchymal progenitors were originally identified as the causative cells of ectopic fat accumulation in skeletal muscles, recent studies have shed light on their beneficial roles in homeostasis, regeneration, and hypertrophy. Furthermore, the heterogeneity of mesenchymal progenitors is of great interest in understanding skeletal muscle development, homeostasis, regeneration, aging, and diseases. In this concise review, we summarize recent findings on the physiological roles of mesenchymal progenitors and their heterogeneity and discuss the remaining critical concerns.


Assuntos
Adipogenia , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Músculo Esquelético/metabolismo , Hipertrofia/metabolismo , Homeostase , Diferenciação Celular/fisiologia
2.
Nature ; 557(7707): 714-718, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29795344

RESUMO

The cell microenvironment, which is critical for stem cell maintenance, contains both cellular and non-cellular components, including secreted growth factors and the extracellular matrix1-3. Although Notch and other signalling pathways have previously been reported to regulate quiescence of stem cells4-9, the composition and source of molecules that maintain the stem cell niche remain largely unknown. Here we show that adult muscle satellite (stem) cells in mice produce extracellular matrix collagens to maintain quiescence in a cell-autonomous manner. Using chromatin immunoprecipitation followed by sequencing, we identified NOTCH1/RBPJ-bound regulatory elements adjacent to specific collagen genes, the expression of which is deregulated in Notch-mutant mice. Moreover, we show that Collagen V (COLV) produced by satellite cells is a critical component of the quiescent niche, as depletion of COLV by conditional deletion of the Col5a1 gene leads to anomalous cell cycle entry and gradual diminution of the stem cell pool. Notably, the interaction of COLV with satellite cells is mediated by the Calcitonin receptor, for which COLV acts as a surrogate local ligand. Systemic administration of a calcitonin derivative is sufficient to rescue the quiescence and self-renewal defects found in COLV-null satellite cells. This study reveals a Notch-COLV-Calcitonin receptor signalling cascade that maintains satellite cells in a quiescent state in a cell-autonomous fashion, and raises the possibility that similar reciprocal mechanisms act in diverse stem cell populations.


Assuntos
Proteína Semelhante a Receptor de Calcitonina/metabolismo , Colágeno/metabolismo , Músculo Esquelético/citologia , Receptores Notch/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Animais , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Colágeno/genética , Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Transcrição Gênica
3.
Am J Physiol Cell Physiol ; 322(2): C275-C282, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020502

RESUMO

Angiogenesis and muscle satellite cell (SC)-mediated myonuclear accretion are considered essential for the robust response of contraction-induced muscle hypertrophy. Moreover, both myonucleus and SCs are physically adjacent to capillaries and are the major sites for the expression of proangiogenic factors, such as VEGF, in the skeletal muscle. Thus, events involving the addition of new myonuclei via activation of SCs may play an important role in angiogenesis during muscle hypertrophy. However, the relevance among myonuclei number, capillary supply, and angiogenesis factor is not demonstrated. The Notch effector HeyL is specifically expressed in SCs in the skeletal muscle and is crucial for SC proliferation by inhibiting MyoD in overload-induced muscle hypertrophy. Here, we tested whether the addition of new myonuclei by SC in overloaded muscle is associated with angiogenic adaptation by reanalyzing skeletal muscle from HeyL-knockout (KO) mice, which show blunted responses of SC proliferation, myonucleus addition, and overload-induced muscle hypertrophy. Reanalysis confirmed blunted SC proliferation and myonuclear accretion in the plantaris muscle of HeyL-KO mice 9 wk after synergist ablation. Interestingly, the increase in capillary-to-fiber ratio observed in wild-type (WT) mice was impaired in HeyL-KO mice. In both WT and HeyL-KO mice, the expression of VEGFA and VEGFB was similarly increased in response to overload. In addition, the expression pattern of TSP-1, a negative regulator of angiogenesis, was also not changed between WT and HeyL-KO mice. Collectively, these results suggest that SCs activation-myonuclear accretion plays a crucial role in angiogenesis during overload-induced muscle hypertrophy via independent of angiogenesis regulators.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Capilares/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Neovascularização Fisiológica , Células Satélites de Músculo Esquelético/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Genótipo , Hipertrofia , Camundongos Knockout , Contração Muscular , Músculo Esquelético/patologia , Fenótipo , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais
4.
Development ; 146(4)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30745427

RESUMO

The undifferentiated state of muscle stem (satellite) cells (MuSCs) is maintained by the canonical Notch pathway. Although three bHLH transcriptional factors, Hey1, HeyL and Hes1, are considered to be potential effectors of the Notch pathway exerting anti-myogenic effects, neither HeyL nor Hes1 inhibits myogenic differentiation of myogenic cell lines. Furthermore, whether these factors work redundantly or cooperatively is unknown. Here, we showed cell-autonomous functions of Hey1 and HeyL in MuSCs using conditional and genetic null mice. Analysis of cultured MuSCs revealed anti-myogenic activity of both HeyL and Hes1. We found that HeyL forms heterodimeric complexes with Hes1 in living cells. Moreover, our ChIP-seq experiments demonstrated that, compared with HeyL alone, the HeyL-Hes1 heterodimer binds with high affinity to specific sites in the chromatin, including the binding sites of Hey1. Finally, analyses of myogenin promoter activity showed that HeyL and Hes1 act synergistically to suppress myogenic differentiation. Collectively, these results suggest that HeyL and Hey1 function redundantly in MuSCs, and that HeyL requires Hes1 for effective DNA binding and biological activity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulação da Expressão Gênica , Células Satélites de Músculo Esquelético/citologia , Fatores de Transcrição HES-1/metabolismo , Alelos , Animais , Sítios de Ligação , Separação Celular , Cromatina/química , DNA/química , Citometria de Fluxo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Receptores Notch/metabolismo , Transdução de Sinais
5.
Stem Cells ; 39(3): 306-317, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33295098

RESUMO

Muscle stem cells, also called muscle satellite cells (MuSCs), are responsible for skeletal muscle regeneration and are sustained in an undifferentiated and quiescent state under steady conditions. The calcitonin receptor (CalcR)-protein kinase A (PKA)-Yes-associated protein 1 (Yap1) axis is one pathway that maintains quiescence in MuSCs. Although CalcR signaling in MuSCs has been identified, the critical CalcR signaling targets are incompletely understood. Here, we show the relevance between the ectopic expression of delta-like non-canonical Notch ligand 1 (Dlk1) and the impaired quiescent state in CalcR-conditional knockout (cKO) MuSCs. Dlk1 expression was rarely detected in both quiescent and proliferating MuSCs in control mice, whereas Dlk1 expression was remarkably increased in CalcR-cKO MuSCs at both the mRNA and protein levels. It is noteworthy that all Ki67+ non-quiescent CalcR-cKO MuSCs express Dlk1, and non-quiescent CalcR-cKO MuSCs are enriched in the Dlk1+ fraction by cell sorting. Using mutant mice, we demonstrated that PKA-activation or Yap1-depletion suppressed Dlk1 expression in CalcR-cKO MuSCs, which suggests that the CalcR-PKA-Yap1 axis inhibits the expression of Dlk1 in quiescent MuSCs. Moreover, the loss of Dlk1 rescued the quiescent state in CalcR-cKO MuSCs, which indicates that the ectopic expression of Dlk1 disturbs quiescence in CalcR-cKO. Collectively, our results suggest that ectopically expressed Dlk1 is responsible for the impaired quiescence in CalcR-cKO MuSCs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Músculo Esquelético/metabolismo , Receptores da Calcitonina/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Proliferação de Células/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco/metabolismo
6.
Exp Cell Res ; 409(2): 112907, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793776

RESUMO

Skeletal muscles are composed of multinuclear cells called myofibers and have unique abilities, one of which is plasticity. In response to the mechanical load induced by physical activity, skeletal muscle exerts several local adaptations, including an increase in myofiber size and myonuclear number, known as muscle hypertrophy. Protein synthesis and muscle satellite cells (MuSCs) are mainly responsible for these adaptations. However, the upstream signaling pathways that promote protein synthesis remain controversial. Further, the necessity of MuSCs in muscle hypertrophy is also a highly debated issue. In this review, we summarized the insulin-like growth factor 1 (IGF-1)/Akt-independent activation of mammalian target of rapamycin (mTOR) signaling in muscle hypertrophy and the involvement of mTOR signaling in age-related loss of skeletal muscle function and mass and in sarcopenia. The roles and behaviors of MuSCs, characteristics of new myonuclei in muscle hypertrophy, and their relevance to sarcopenia have also been updated in this review.


Assuntos
Hipertrofia/patologia , Doenças Musculares/patologia , Células Satélites de Músculo Esquelético/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Humanos , Hipertrofia/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Doenças Musculares/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
7.
J Cell Sci ; 132(1)2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30510113

RESUMO

Roundabout guidance receptor 4 (Robo4) is an endothelial cell-specific receptor that stabilizes the vasculature in pathological angiogenesis. Although Robo4 has been shown to suppress vascular hyperpermeability induced by vascular endothelial growth factor (VEGF) in angiogenesis, the role of Robo4 in inflammation is poorly understood. In this study, we investigated the role of Robo4 in vascular hyperpermeability during inflammation. Endotoxemia models using Robo4-/- mice showed increased mortality and vascular leakage. In endothelial cells, Robo4 suppressed tumor necrosis factor α (TNFα)-induced hyperpermeability by stabilizing VE-cadherin at cell junctions, and deletion assays revealed that the C-terminus of Robo4 was involved in this suppression. Through binding and localization assays, we demonstrated that in endothelial cells, Robo4 binds to TNF receptor-associated factor 7 (TRAF7) through interaction with the C-terminus of Robo4. Gain- and loss-of-function studies of TRAF7 with or without Robo4 expression showed that TRAF7 is required for Robo4-mediated suppression of hyperpermeability. Taken together, our results demonstrate that the Robo4-TRAF7 complex is a novel negative regulator of inflammatory hyperpermeability. We propose this complex as a potential future target for protection against inflammatory diseases.


Assuntos
Permeabilidade da Membrana Celular , Endotélio Vascular/patologia , Endotoxemia/complicações , Inflamação/patologia , Neovascularização Patológica/patologia , Receptores de Superfície Celular/fisiologia , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotoxemia/induzido quimicamente , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neovascularização Patológica/etiologia , Neovascularização Patológica/metabolismo , Transdução de Sinais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética
8.
Biochem Biophys Res Commun ; 534: 79-85, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310192

RESUMO

Epigenetic transcriptional regulation is essential for the differentiation of various types of cells, including skeletal muscle cells. DNA methyltransferase 1 (Dnmt1) is responsible for maintenance of DNA methylation patterns via cell division. Here, we investigated the relationship between Dnmt1 and skeletal muscle regeneration. We found that Dnmt1 is upregulated in muscles during regeneration. To assess the role of Dnmt1 in satellite cells during regeneration, we performed conditional knockout (cKO) of Dnmt1 specifically in skeletal muscle satellite cells using Pax7CreERT2 mice and Dnmt1 flox mice. Muscle weight and the cross-sectional area after injury were significantly lower in Dnmt1 cKO mice than in control mice. RNA sequencing analysis revealed upregulation of genes involved in cell adhesion and apoptosis in satellite cells from cKO mice. Moreover, satellite cells cultured from cKO mice exhibited a reduced number of cells. These results suggest that Dnmt1 is an essential factor for muscle regeneration and is involved in positive regulation of satellite cell number.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Músculo Esquelético/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/fisiologia , Animais , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1/genética , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/lesões , Fator de Transcrição PAX7/genética , Células Satélites de Músculo Esquelético/citologia
9.
J Cell Physiol ; 234(2): 1689-1698, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30070693

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator for the induction of antioxidative genes and plays roles in diverse cellular functions. The roles of Nrf2 in muscle regeneration have been investigated, and both important and unimportant roles of Nrf2 for muscle regeneration have been reported. Here, using aged Nrf2-null and Nrf2-dystrophic double-null mice, we showed nonsignificant phenotypes in the muscle regeneration ability of Nrf2-null mice. In contrast with these results, strikingly, almost all Nrf2-null muscle stem cells (MuSCs) isolated by fluorescence-activated cell sorting died in vitro of apoptosis and were not rescued by antioxidative reagents. Although their proliferation was still impaired, the Nrf2-null MuSCs attached to myofibers activated and divided normally, at least in the first round. To elucidate these discrepancies of MuSCs behaviors, we focused on the basal lamina, because both in vivo and single myofiber culture allow MuSCs within the basal lamina to become activated. In a basal lamina-disrupted model, Nrf2-null mice exhibited remarkable regeneration defects without increased levels of reactive oxidative species in MuSCs, suggesting that the existence of the basal lamina affects the survival of Nrf2-null MuSCs. Taken together, these results suggest that the basal lamina compensates for the loss of Nrf2, independent of the antioxidative roles of Nrf2. In addition, experimental conditions might explain the discrepant results of Nrf2-null regenerative ability.


Assuntos
Membrana Basal/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Apoptose , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Colágeno/metabolismo , Combinação de Medicamentos , Laminina/metabolismo , Camundongos Endogâmicos mdx , Camundongos Knockout , Músculo Esquelético/patologia , Fator 2 Relacionado a NF-E2/genética , Proteoglicanas/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/patologia , Transdução de Sinais
10.
Int J Mol Sci ; 20(13)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277245

RESUMO

Delta like non-canonical Notch ligand 1 (Dlk1) is a paternally expressed gene which is also known as preadipocyte factor 1 (Pref-1). The accumulation of adipocytes and expression of Dlk1 in regenerating muscle suggests a correlation between fat accumulation and Dlk1 expression in the muscle. Additionally, mice overexpressing Dlk1 show increased muscle weight, while Dlk1-null mice exhibit decreased body weight and muscle mass, indicating that Dlk1 is a critical factor in regulating skeletal muscle mass during development. The muscle regeneration process shares some features with muscle development. However, the role of Dlk1 in regeneration processes remains controversial. Here, we show that mesenchymal progenitors also known as adipocyte progenitors exclusively express Dlk1 during muscle regeneration. Eliminating developmental effects, we used conditional depletion models to examine the specific roles of Dlk1 in muscle stem cells or mesenchymal progenitors. Unexpectedly, deletion of Dlk1 in neither the muscle stem cells nor the mesenchymal progenitors affected the regenerative ability of skeletal muscle. In addition, fat accumulation was not increased by the loss of Dlk1. Collectively, Dlk1 plays essential roles in muscle development, but does not greatly impact regeneration processes and adipogenic differentiation in adult skeletal muscle regeneration.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Músculo Esquelético/fisiologia , Regeneração , Células-Tronco/metabolismo , Animais , Proteínas de Ligação ao Cálcio/fisiologia , Camundongos , Camundongos Knockout , Desenvolvimento Muscular , Células-Tronco/fisiologia
11.
J Biol Chem ; 292(38): 15939-15951, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28790171

RESUMO

The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1ß, after injury and that inhibition of TNF-α and IL-1ß by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1, but not Ror2, was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1ß induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders.


Assuntos
Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/citologia , Animais , Linhagem Celular , Proliferação de Células , Regulação Enzimológica da Expressão Gênica , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , NF-kappa B/metabolismo , Fator de Transcrição PAX7/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
12.
Development ; 142(1): 51-61, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25480916

RESUMO

Muscle satellite cells are indispensable for muscle regeneration, but the functional diversity of their daughter cells is unknown. Here, we show that many Pax7(+)MyoD(-) cells locate both beneath and outside the basal lamina during myofiber maturation. A large majority of these Pax7(+)MyoD(-) cells are not self-renewed satellite cells, but have different potentials for both proliferation and differentiation from Pax7(+)MyoD(+) myoblasts (classical daughter cells), and are specifically marked by expression of the doublecortin (Dcx) gene. Transplantation and lineage-tracing experiments demonstrated that Dcx-expressing cells originate from quiescent satellite cells and that the microenvironment induces Dcx in myoblasts. Expression of Dcx seems to be necessary for myofiber maturation because Dcx-deficient mice exhibited impaired myofiber maturation resulting from a decrease in the number of myonuclei. Furthermore, in vitro and in vivo studies suggest that one function of Dcx in myogenic cells is acceleration of cell motility. These results indicate that Dcx is a new marker for the Pax7(+)MyoD(-) subpopulation, which contributes to myofiber maturation during muscle regeneration.


Assuntos
Diferenciação Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Neuropeptídeos/metabolismo , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Cardiotoxinas/administração & dosagem , Movimento Celular , Microambiente Celular , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/deficiência , Proteína MyoD/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Neuropeptídeos/deficiência , Fator de Transcrição PAX7/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células-Tronco/metabolismo
13.
Clin Calcium ; 28(3): 329-333, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-29512523

RESUMO

Skeletal muscle composes 30-40% of our body weight and is formed by multinuclear cells called myofibers. The formation of myofiber depends on the dynamic proliferation, differentiation and fusion of the myogenic progenitors during development. In the adult stage, the skeletal muscle exhibits excellent regeneration ability as well, depended on the muscle stem(satellite)cells that generate and repair myofibers. In this review, we would like to introduce ① the mechanisms of myogenic progenitor-dependent myofiber formation in myogenesis, ② the common fusion mechanism for myogenesis and muscle regeneration, and ③ the current status and prospects for clinical application utilizing satellite cells.


Assuntos
Homeostase , Desenvolvimento Muscular , Doenças Musculoesqueléticas/fisiopatologia , Regeneração , Animais , Humanos , Medicina Regenerativa
14.
Clin Calcium ; 27(3): 339-344, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28232647

RESUMO

Skeletal muscle has its stem cell named satellite cell. The absence of satellite cells does not allow muscle regeneration, it is unquestionable that satellite cell is indispensable for muscle regeneration processes. A certain number of satellite cells appear to be necessary for the successful muscle regeneration, meaning the maintenance of the satellite cells is essential for the functional homeostasis of skeletal muscle. Recent studies have revealed the molecular mechanism underlying satellite cell maintenance in a steady state. A loss of those molecules responsible for the maintenance often results in decreased satellite cell pool and reduced regeneration ability. On the other hand, the contribution of satellite cells to muscle hypertrophy or aged-related atrophy(sarcopenia)is controversial. In this review, we will introduce the molecules that regulate satellite cells homeostasis in the dormant state and then further discuss the recent results on the roles of satellite cell in sarcopenia.


Assuntos
Músculo Esquelético/metabolismo , Sarcopenia/metabolismo , Células Satélites Perineuronais/metabolismo , Animais , Humanos , MicroRNAs/genética , Sarcopenia/genética , Transdução de Sinais
15.
Stem Cells ; 33(8): 2456-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25917344

RESUMO

Sarcopenia, age-related muscle weakness, increases the frequency of falls and fractures in elderly people, which can trigger severe muscle injury. Rapid and successful recovery from muscle injury is essential not to cause further frailty and loss of independence. In fact, we showed insufficient muscle regeneration in aged mice. Although the number of satellite cells, muscle stem cells, decreases with age, the remaining satellite cells maintain the myogenic capacity equivalent to young mice. Transplantation of young green fluorescent protein (GFP)-Tg mice-derived satellite cells into young and aged mice revealed that age-related deterioration of the muscle environment contributes to the decline in regenerative capacity of satellite cells. Thus, extrinsic changes rather than intrinsic changes in satellite cells appear to be a major determinant of inefficient muscle regeneration with age. Comprehensive protein expression analysis identified a decrease in insulin-like growth factor-II (IGF-II) level in regenerating muscle of aged mice. We found that pro- and big-IGF-II but not mature IGF-II specifically express during muscle regeneration and the expressions are not only delayed but also decreased in absolute quantity with age. Supplementation of pro-IGF-II in aged mice ameliorated the inefficient regenerative response by promoting proliferation of satellite cells, angiogenesis, and suppressing adipogenic differentiation of platelet derived growth factor receptor (PDGFR)α(+) mesenchymal progenitors. We further revealed that pro-IGF-II but not mature IGF-II specifically inhibits the pathological adipogenesis of PDGFRα(+) cells. Together, these results uncovered a distinctive pro-IGF-II-mediated self-reinforcement mechanism of muscle regeneration and suggest that supplementation of pro-IGF-II could be one of the most effective therapeutic approaches for muscle injury in elderly people.


Assuntos
Envelhecimento/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Músculo Esquelético/fisiologia , Precursores de Proteínas/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismo , Envelhecimento/genética , Animais , Fator de Crescimento Insulin-Like II/genética , Camundongos , Camundongos Knockout , Precursores de Proteínas/genética
16.
Stem Cells ; 33(10): 3017-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26013034

RESUMO

Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin-4 (Ten-4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten-4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten-4-deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten-4-deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten-4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten-4 functions as a crucial player in maintaining the quiescence of muscle satellite cells.


Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Proteínas de Membrana/genética , Regeneração/genética , Animais , Proteínas de Membrana/metabolismo , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Miofibrilas/metabolismo , Miofibrilas/patologia , Células Satélites de Músculo Esquelético/metabolismo
17.
Hum Mol Genet ; 22(15): 3003-15, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23562821

RESUMO

A group of muscular dystrophies, dystroglycanopathy is caused by abnormalities in post-translational modifications of dystroglycan (DG). To understand better the pathophysiological roles of DG modification and to establish effective clinical treatment for dystroglycanopathy, we here generated two distinct conditional knock-out (cKO) mice for fukutin, the first dystroglycanopathy gene identified for Fukuyama congenital muscular dystrophy. The first dystroglycanopathy model-myofiber-selective fukutin-cKO [muscle creatine kinase (MCK)-fukutin-cKO] mice-showed mild muscular dystrophy. Forced exercise experiments in presymptomatic MCK-fukutin-cKO mice revealed that myofiber membrane fragility triggered disease manifestation. The second dystroglycanopathy model-muscle precursor cell (MPC)-selective cKO (Myf5-fukutin-cKO) mice-exhibited more severe phenotypes of muscular dystrophy. Using an isolated MPC culture system, we demonstrated, for the first time, that defects in the fukutin-dependent modification of DG lead to impairment of MPC proliferation, differentiation and muscle regeneration. These results suggest that impaired MPC viability contributes to the pathology of dystroglycanopathy. Since our data suggested that frequent cycles of myofiber degeneration/regeneration accelerate substantial and/or functional loss of MPC, we expected that protection from disease-triggering myofiber degeneration provides therapeutic effects even in mouse models with MPC defects; therefore, we restored fukutin expression in myofibers. Adeno-associated virus (AAV)-mediated rescue of fukutin expression that was limited in myofibers successfully ameliorated the severe pathology even after disease progression. In addition, compared with other gene therapy studies, considerably low AAV titers were associated with therapeutic effects. Together, our findings indicated that fukutin-deficient dystroglycanopathy is a regeneration-defective disorder, and gene therapy is a feasible treatment for the wide range of dystroglycanopathy even after disease progression.


Assuntos
Distroglicanas/metabolismo , Expressão Gênica , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mioblastos/metabolismo , Fenótipo , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Glicosilação , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fator Regulador Miogênico 5/genética , Proteínas/genética , Proteínas/metabolismo , Transferases
18.
Biochem Biophys Res Commun ; 464(3): 755-61, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26164231

RESUMO

Met Activating Genetically Improved Chimeric Factor 1 (Magic-F1) is a human recombinant protein, derived from dimerization of the receptor-binding domain of hepatocyte growth factor. Previous experiments demonstrate that in transgenic mice, the skeletal muscle specific expression of Magic-F1 can induce a constitutive muscular hypertrophy, improving running performance and accelerating muscle regeneration after injury. In order to evaluate the therapeutic potential of Magic-F1, we tested its effect on multipotent and pluripotent stem cells. In murine mesoangioblasts (adult vessel-associated stem cells), the presence of Magic-F1 did not alter their osteogenic, adipogenic or smooth muscle differentiation ability. However, when analyzing their myogenic potential, mesoangioblasts expressing Magic-F1 differentiated spontaneously into myotubes. Finally, Magic-F1 inducible cassette was inserted into a murine embryonic stem cell line by homologous recombination. When embryonic stem cells were subjected to myogenic differentiation, the presence of Magic-F1 resulted in the upregulation of Pax3 and Pax7 that enhanced the myogenic commitment of transgenic pluripotent stem cells. Taken together our results candidate Magic-F1 as a potent myogenic stimulator, able to enhance muscular differentiation from both adult and pluripotent stem cells.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/fisiologia , Desenvolvimento Muscular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Desenvolvimento Muscular/genética , Fator de Transcrição PAX3 , Fator de Transcrição PAX7/genética , Fatores de Transcrição Box Pareados/genética , Regulação para Cima
19.
Genes Cells ; 19(4): 287-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24475942

RESUMO

Activation of Wnt/ß-catenin signal in muscle satellite cells (mSCs) of aged mice during myogenic differentiation has been appreciated as an important age-related feature of the skeletal muscles, resulting in impairment of their regenerative ability following muscle injury. However, it remains elusive about molecules involved in this age-related alteration of Wnt/ß-catenin signal in myogenic cells. To clarify this issue, we carried out expression analyses of Wnt receptor genes using real-time RT-PCR in mSCs isolated from the skeletal muscles of young and aged mice. Here, we show that expression of Frizzled1 (Fzd1) was detected at high levels in mSCs of aged mice. Higher expression levels of Fzd1 were also detected in mSC-derived myogenic cells from aged mice and associated with activation of Wnt/ß-catenin signal during their myogenic differentiation in vitro. We also provide evidence that suppressed expression of Fzd1 in myogenic cells from aged mice results in a significant increase in myogenic differentiation, and its forced expression in those from young mice results in its drastic inhibition. These findings indicate the critical role of Fzd1 in altered myogenic differentiation associated with aging.


Assuntos
Diferenciação Celular/fisiologia , Receptores Frizzled/metabolismo , Células Satélites de Músculo Esquelético/citologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Fatores Etários , Envelhecimento , Animais , Células Cultivadas , Masculino , Camundongos Endogâmicos ICR , Células Satélites de Músculo Esquelético/metabolismo , Transdução de Sinais
20.
J Immunol ; 190(8): 4046-55, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23509367

RESUMO

Th9 cells are a novel Th cell subset that produces IL-9 and is involved in type I hypersensitivity such as airway inflammation. Although its critical roles in asthma have attracted interest, the physiological regulatory mechanisms of Th9 cell differentiation and function are largely unknown. Asthma is easily affected by psychological factors. Therefore, we investigated one of the physiological mediators derived from the nervous system, calcitonin gene-related peptide (CGRP), in asthma and Th9 cells because CGRP and activation of the cAMP/protein kinase A (PKA) pathway by CGRP are known to be important regulators in several immune responses and allergic diseases. In this study, we demonstrated that the CGRP/cAMP/PKA pathway promotes IL-9 production via NFATc2 activation by PKA-dependent glycogen synthase kinase-3ß inactivation. Moreover, CGRP also induces the expression of PU.1, a critical transcriptional factor in Th9 cells, which depends on PKA, but not NFATc2. Additionally, we demonstrated the physiological importance of CGRP in IL-9 production and Th9 differentiation using an OVA-induced airway inflammation model and T cell-specific CGRP receptor-deficient mice. The present study revealed a novel regulatory mechanism comprising G protein-coupled receptor ligands and nervous system-derived substances in Th9 cell differentiation and type I hypersensitivity.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Diferenciação Celular/imunologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , AMP Cíclico/fisiologia , Interleucina-1/biossíntese , Transdução de Sinais/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio Sintase Quinase 3 beta , Interleucina-1/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T Auxiliares-Indutores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA