RESUMO
Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and are associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas, independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastasis, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1-and not vascular endothelial growth factor receptor 1-to promote tumor cell survival. This critical tumor-stroma interaction-mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes-supports the development of therapies targeting PlGF/Nrp1 pathway.
Assuntos
Neoplasias Cerebelares/patologia , Cerebelo/metabolismo , Meduloblastoma/patologia , Neuropilina-1/metabolismo , Proteínas da Gravidez/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Neoplasias Cerebelares/metabolismo , Humanos , Meduloblastoma/metabolismo , Camundongos , Camundongos Knockout , Transplante de Neoplasias , Comunicação Parácrina , Fator de Crescimento Placentário , Transplante Heterólogo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
This Article has been retracted; see accompanying Retraction.
RESUMO
Successful T cell immunotherapy for brain cancer requires that the T cells can access tumour tissues, but this has been difficult to achieve. Here we show that, in contrast to inflammatory brain diseases such as multiple sclerosis, where endothelial cells upregulate ICAM1 and VCAM1 to guide the extravasation of pro-inflammatory cells, cancer endothelium downregulates these molecules to evade immune recognition. By contrast, we found that cancer endothelium upregulates activated leukocyte cell adhesion molecule (ALCAM), which allowed us to overcome this immune-evasion mechanism by creating an ALCAM-restricted homing system (HS). We re-engineered the natural ligand of ALCAM, CD6, in a manner that triggers initial anchorage of T cells to ALCAM and conditionally mediates a secondary wave of adhesion by sensitizing T cells to low-level ICAM1 on the cancer endothelium, thereby creating the adhesion forces necessary to capture T cells from the bloodstream. Cytotoxic HS T cells robustly infiltrated brain cancers after intravenous injection and exhibited potent antitumour activity. We have therefore developed a molecule that targets the delivery of T cells to brain cancer.
RESUMO
Liver metastasis is a major cause of mortality for patients with colorectal cancer (CRC). Mismatch repair-proficient (pMMR) CRCs make up about 95% of metastatic CRCs, and are unresponsive to immune checkpoint blockade (ICB) therapy. Here we show that mouse models of orthotopic pMMR CRC liver metastasis accurately recapitulate the inefficacy of ICB therapy in patients, whereas the same pMMR CRC tumors are sensitive to ICB therapy when grown subcutaneously. To reveal local, nonmalignant components that determine CRC sensitivity to treatment, we compared the microenvironments of pMMR CRC cells grown as liver metastases and subcutaneous tumors. We found a paucity of both activated T cells and dendritic cells in ICB-treated orthotopic liver metastases, when compared with their subcutaneous tumor counterparts. Furthermore, treatment with Feline McDonough sarcoma (FMS)-like tyrosine kinase 3 ligand (Flt3L) plus ICB therapy increased dendritic cell infiltration into pMMR CRC liver metastases and improved mouse survival. Lastly, we show that human CRC liver metastases and microsatellite stable (MSS) primary CRC have a similar paucity of T cells and dendritic cells. These studies indicate that orthotopic tumor models, but not subcutaneous models, should be used to guide human clinical trials. Our findings also posit dendritic cells as antitumor components that can increase the efficacy of immunotherapies against pMMR CRC.
Assuntos
Neoplasias Colorretais/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Reparo de Erro de Pareamento de DNA , Células Dendríticas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interferon gama/uso terapêutico , Neoplasias Hepáticas Experimentais/imunologia , Neoplasias Hepáticas Experimentais/secundário , Masculino , Camundongos Endogâmicos C57BLRESUMO
Immunotherapy, including immune checkpoint inhibitors, has revolutionized cancer treatment, but only a minor fraction of patients shows durable responses. A new approach to overcome this limitation is yet to be identified. Recently, we have shown that photobiomodulation (PBM) with near-infrared (NIR) light in the NIR-II window reduces oxidative stress and supports the proliferation of CD8+ T cells, suggesting that PBM with NIR-II light could augment anti-cancer immunity. Here, we report a novel approach to support tumor-infiltrating CD8+ T cells upon PBM with NIR-II laser with high tissue penetration depth. Brief treatments of a murine model of breast cancer with dual 1064 and 1270 nm lasers reduced the expression of the programmed cell death protein 1 (PD-1) in CD8+ T cells in a syngeneic mouse model of breast cancer. The direct effect of the NIR-II laser treatment on T cells was confirmed by the enhanced tumor growth delay by the adoptive transfer of laser-treated CD8+ T cells ex vivo against a model tumor antigen. We further demonstrated that specific NIR-II laser parameters augmented the effect of the immune checkpoint inhibitor on tumor growth. PBM with NIR-II light augments the efficacy of cancer immunotherapy by supporting CD8+ T cells. Unlike the current immunotherapy with risks of undesirable drug-drug interactions and severe adverse events, the laser is safe and low-cost. It can be broadly combined with other therapy without modification to achieve clinical significance. In addition, our study established a path to develop a novel laser-based therapy to treat cancer effectively.
Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Animais , Imunoterapia , Lasers , Camundongos , Neoplasias/terapia , OxirreduçãoRESUMO
The failure of anti-VEGF/R and immune checkpoint therapies to improve overall survival in Phase III clinical trials in glioblastoma (GBM) is considered to be due in part to the prevalent immunosuppression in the GBM tumor microenvironment. Immune suppression is mediated in part by resident microglia and bone-marrow-derived myeloid cells recruited during tumor progression. A paper by Blank et al published in a recent issue of The Journal of Pathology proposes a myeloid cell-mediated mechanism that could contribute to resistance to anti-VEGF/R in GBM patients. A granulocyte-rich GBM tumor microenvironment may push the associated microglia/macrophages to exhibit an activated and immune suppressive phenotype. The identification of pro-angiogenic factors produced by microglia/macrophages and granulocytes in such a tumor microenvironment may offer new targets for improving antiangiogenic therapy of GBM beyond VEGF. Further, consideration of parameters such as IDH status, corticosteroid dosage, tumor mutational burden, gender, vascular function, and pericyte coverage could exploit current immunotherapies to the fullest to reprogram the granulocyte-rich immunosuppressive GBM tumor microenvironment to an immunostimulatory one. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Granulócitos , Humanos , Terapia de Imunossupressão , Microambiente TumoralRESUMO
Cooption of the host vasculature is a strategy that some cancers use to sustain tumor progression without-or before-angiogenesis or in response to antiangiogenic therapy. Facilitated by certain growth factors, cooption can mediate tumor infiltration and confer resistance to antiangiogenic drugs. Unfortunately, this mode of tumor progression is difficult to target because the underlying mechanisms are not fully understood. Here, we analyzed the dynamics of vessel cooption during tumor progression and in response to antiangiogenic treatment in gliomas and brain metastases. We followed tumor evolution during escape from antiangiogenic treatment as cancer cells coopted, and apparently mechanically compressed, host vessels. To gain deeper understanding, we developed a mathematical model, which incorporated compression of coopted vessels, resulting in hypoxia and formation of new vessels by angiogenesis. Even if antiangiogenic therapy can block such secondary angiogenesis, the tumor can sustain itself by coopting existing vessels. Hence, tumor progression can only be stopped by combination therapies that judiciously block both angiogenesis and cooption. Furthermore, the model suggests that sequential blockade is likely to be more beneficial than simultaneous blockade.
Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Glioblastoma/irrigação sanguínea , Neovascularização Patológica/patologia , Inibidores da Angiogênese/uso terapêutico , Angiopoietina-2/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Microscopia/métodos , Invasividade Neoplásica , Neovascularização Patológica/prevenção & controle , Oxigênio/metabolismo , Ratos , Reprodutibilidade dos Testes , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
Fluorescence imaging is a method of real-time molecular tracking in vivo that has enabled many clinical technologies. Imaging in the shortwave IR (SWIR; 1,000-2,000 nm) promises higher contrast, sensitivity, and penetration depths compared with conventional visible and near-IR (NIR) fluorescence imaging. However, adoption of SWIR imaging in clinical settings has been limited, partially due to the absence of US Food and Drug Administration (FDA)-approved fluorophores with peak emission in the SWIR. Here, we show that commercially available NIR dyes, including the FDA-approved contrast agent indocyanine green (ICG), exhibit optical properties suitable for in vivo SWIR fluorescence imaging. Even though their emission spectra peak in the NIR, these dyes outperform commercial SWIR fluorophores and can be imaged in the SWIR, even beyond 1,500 nm. We show real-time fluorescence imaging using ICG at clinically relevant doses, including intravital microscopy, noninvasive imaging in blood and lymph vessels, and imaging of hepatobiliary clearance, and show increased contrast compared with NIR fluorescence imaging. Furthermore, we show tumor-targeted SWIR imaging with IRDye 800CW-labeled trastuzumab, an NIR dye being tested in multiple clinical trials. Our findings suggest that high-contrast SWIR fluorescence imaging can be implemented alongside existing imaging modalities by switching the detection of conventional NIR fluorescence systems from silicon-based NIR cameras to emerging indium gallium arsenide-based SWIR cameras. Using ICG in particular opens the possibility of translating SWIR fluorescence imaging to human clinical applications. Indeed, our findings suggest that emerging SWIR-fluorescent in vivo contrast agents should be benchmarked against the SWIR emission of ICG in blood.
Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Meios de Contraste , Corantes Fluorescentes , Raios Infravermelhos , Microscopia Intravital/métodos , Vasos Linfáticos/diagnóstico por imagem , Animais , Bovinos , Meios de Contraste/farmacocinética , Meios de Contraste/farmacologia , Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/farmacologia , Verde de Indocianina , Camundongos , Microscopia de Fluorescência/métodos , Trastuzumab/farmacocinética , Trastuzumab/farmacologiaRESUMO
Blood-brain/blood-tumor barriers (BBB and BTB) and interstitial transport may constitute major obstacles to the transport of therapeutics in brain tumors. In this study, we examined the impact of focused ultrasound (FUS) in combination with microbubbles on the transport of two relevant chemotherapy-based anticancer agents in breast cancer brain metastases at cellular resolution: doxorubicin, a nontargeted chemotherapeutic, and ado-trastuzumab emtansine (T-DM1), an antibody-drug conjugate. Using an orthotopic xenograft model of HER2-positive breast cancer brain metastasis and quantitative microscopy, we demonstrate significant increases in the extravasation of both agents (sevenfold and twofold for doxorubicin and T-DM1, respectively), and we provide evidence of increased drug penetration (>100 vs. <20 µm and 42 ± 7 vs. 12 ± 4 µm for doxorubicin and T-DM1, respectively) after the application of FUS compared with control (non-FUS). Integration of experimental data with physiologically based pharmacokinetic (PBPK) modeling of drug transport reveals that FUS in combination with microbubbles alleviates vascular barriers and enhances interstitial convective transport via an increase in hydraulic conductivity. Experimental data demonstrate that FUS in combination with microbubbles enhances significantly the endothelial cell uptake of the small chemotherapeutic agent. Quantification with PBPK modeling reveals an increase in transmembrane transport by more than two orders of magnitude. PBPK modeling indicates a selective increase in transvascular transport of doxorubicin through small vessel wall pores with a narrow range of sizes (diameter, 10-50 nm). Our work provides a quantitative framework for the optimization of FUS-drug combinations to maximize intratumoral drug delivery and facilitate the development of strategies to treat brain metastases.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Ado-Trastuzumab Emtansina , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Humanos , Maitansina/administração & dosagem , Maitansina/análogos & derivados , Maitansina/farmacocinética , Camundongos , Microbolhas , Trastuzumab/administração & dosagem , Trastuzumab/farmacocinética , Ultrassonografia/métodos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Coinhibitory receptors, such as CTLA-4 and PD-1, play a critical role in maintaining immune homeostasis by dampening T cell responses. Recently, they have gained attention as therapeutic targets in chronic disease settings where their dysregulated expression contributes to suppressed immune responses. The novel coinhibitory receptor TIGIT (T cell Ig and ITIM domain) has been shown to play an important role in modulating immune responses in the context of autoimmunity and cancer. However, the molecular mechanisms by which TIGIT modulates immune responses are still insufficiently understood. We have generated a panel of monoclonal anti-mouse TIGIT Abs that show functional properties in mice in vivo and can serve as important tools to study the underlying mechanisms of TIGIT function. We have identified agonistic as well as blocking anti-TIGIT Ab clones that are capable of modulating T cell responses in vivo. Administration of either agonist or blocking anti-TIGIT Abs modulated autoimmune disease severity whereas administration of blocking anti-TIGIT Abs synergized with anti-PD-1 Abs to affect partial or even complete tumor regression. The Abs presented in this study can thus serve as important tools for detailed analysis of TIGIT function in different disease settings and the knowledge gained will provide valuable insight for the development of novel therapeutic approaches targeting TIGIT.
Assuntos
Anticorpos Monoclonais/imunologia , Autoimunidade/imunologia , Neoplasias/imunologia , Receptores Imunológicos/imunologia , Animais , CamundongosRESUMO
Antiangiogenic therapy with antibodies against VEGF (bevacizumab) or VEGFR2 (ramucirumab) has been proven efficacious in colorectal cancer (CRC) patients. However, the improvement in overall survival is modest and only in combination with chemotherapy. Thus, there is an urgent need to identify potential underlying mechanisms of resistance specific to antiangiogenic therapy and develop strategies to overcome them. Here we found that anti-VEGFR2 therapy up-regulates both C-X-C chemokine ligand 12 (CXCL12) and C-X-C chemokine receptor 4 (CXCR4) in orthotopic murine CRC models, including SL4 and CT26. Blockade of CXCR4 signaling significantly enhanced treatment efficacy of anti-VEGFR2 treatment in both CRC models. CXCR4 was predominantly expressed in immunosuppressive innate immune cells, which are recruited to CRCs upon anti-VEGFR2 treatment. Blockade of CXCR4 abrogated the recruitment of these innate immune cells. Importantly, these myeloid cells were mostly Ly6Clow monocytes and not Ly6Chigh monocytes. To selectively deplete individual innate immune cell populations, we targeted key pathways in Ly6Clow monocytes (Cx3cr1-/- mice), Ly6Chigh monocytes (CCR2-/- mice), and neutrophils (anti-Ly6G antibody) in combination with CXCR4 blockade in SL4 CRCs. Depletion of Ly6Clow monocytes or neutrophils improved anti-VEGFR2-induced SL4 tumor growth delay similar to the CXCR4 blockade. In CT26 CRCs, highly resistant to anti-VEGFR2 therapy, CXCR4 blockade enhanced anti-VEGFR2-induced tumor growth delay but specific depletion of Ly6G+ neutrophils did not. The discovery of CXCR4-dependent recruitment of Ly6Clow monocytes in tumors unveiled a heretofore unknown mechanism of resistance to anti-VEGF therapies. Our findings also provide a rapidly translatable strategy to enhance the outcome of anti-VEGF cancer therapies.
Assuntos
Inibidores da Angiogênese/farmacologia , Neoplasias Colorretais/terapia , Monócitos/imunologia , Neutrófilos/imunologia , Receptores CXCR4/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antígenos Ly/metabolismo , Benzilaminas , Bevacizumab/farmacologia , Proliferação de Células , Quimiocina CXCL12/biossíntese , Ciclamos , Compostos Heterocíclicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/biossíntese , Células Tumorais Cultivadas , RamucirumabRESUMO
Analysis of embryonic fibroblasts from GFP reporter mice indicates that the fibroblast cell type harbors a large collection of developmentally and phenotypically heterogeneous subtypes. Some of these cells exhibit multipotency, whereas others do not. Multiparameter flow cytometry analysis shows that a large number of distinct populations of fibroblast-like cells can be found in cultures initiated from different embryonic organs, and cells sorted according to their surface phenotype typically retain their characteristics on continued propagation in culture. Similarly, surface phenotypes of individual cloned fibroblast-like cells exhibit significant variation. The fibroblast cell class appears to contain a very large number of denumerable subtypes.
Assuntos
Embrião de Mamíferos/citologia , Fibroblastos/fisiologia , Animais , Linhagem Celular , Separação Celular , Fibroblastos/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Pericitos/citologia , Pericitos/fisiologia , Fenótipo , Análise de Célula Única , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/genéticaRESUMO
Glioblastomas (GBMs) rapidly become refractory to anti-VEGF therapies. We previously demonstrated that ectopic overexpression of angiopoietin-2 (Ang-2) compromises the benefits of anti-VEGF receptor (VEGFR) treatment in murine GBM models and that circulating Ang-2 levels in GBM patients rebound after an initial decrease following cediranib (a pan-VEGFR tyrosine kinase inhibitor) administration. Here we tested whether dual inhibition of VEGFR/Ang-2 could improve survival in two orthotopic models of GBM, Gl261 and U87. Dual therapy using cediranib and MEDI3617 (an anti-Ang-2-neutralizing antibody) improved survival over each therapy alone by delaying Gl261 growth and increasing U87 necrosis, effectively reducing viable tumor burden. Consistent with their vascular-modulating function, the dual therapies enhanced morphological normalization of vessels. Dual therapy also led to changes in tumor-associated macrophages (TAMs). Inhibition of TAM recruitment using an anti-colony-stimulating factor-1 antibody compromised the survival benefit of dual therapy. Thus, dual inhibition of VEGFR/Ang-2 prolongs survival in preclinical GBM models by reducing tumor burden, improving normalization, and altering TAMs. This approach may represent a potential therapeutic strategy to overcome the limitations of anti-VEGFR monotherapy in GBM patients by integrating the complementary effects of anti-Ang2 treatment on vessels and immune cells.
Assuntos
Anticorpos Antineoplásicos/farmacologia , Glioblastoma , Macrófagos , Proteínas de Neoplasias , Neoplasias Experimentais , Neovascularização Patológica , Quinazolinas/farmacologia , Receptores de Fatores de Crescimento do Endotélio Vascular , Ribonuclease Pancreático , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ribonuclease Pancreático/antagonistas & inibidores , Ribonuclease Pancreático/metabolismoRESUMO
Inhibition of the vascular endothelial growth factor (VEGF) pathway has failed to improve overall survival of patients with glioblastoma (GBM). We previously showed that angiopoietin-2 (Ang-2) overexpression compromised the benefit from anti-VEGF therapy in a preclinical GBM model. Here we investigated whether dual Ang-2/VEGF inhibition could overcome resistance to anti-VEGF treatment. We treated mice bearing orthotopic syngeneic (Gl261) GBMs or human (MGG8) GBM xenografts with antibodies inhibiting VEGF (B20), or Ang-2/VEGF (CrossMab, A2V). We examined the effects of treatment on the tumor vasculature, immune cell populations, tumor growth, and survival in both the Gl261 and MGG8 tumor models. We found that in the Gl261 model, which displays a highly abnormal tumor vasculature, A2V decreased vessel density, delayed tumor growth, and prolonged survival compared with B20. In the MGG8 model, which displays a low degree of vessel abnormality, A2V induced no significant changes in the tumor vasculature but still prolonged survival. In both the Gl261 and MGG8 models A2V reprogrammed protumor M2 macrophages toward the antitumor M1 phenotype. Our findings indicate that A2V may prolong survival in mice with GBM by reprogramming the tumor immune microenvironment and delaying tumor growth.
Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Glioblastoma/tratamento farmacológico , Macrófagos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais/tratamento farmacológico , Ribonuclease Pancreático/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Proteínas de Transporte Vesicular/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Macrófagos/patologia , Camundongos , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ribonuclease Pancreático/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level. Dysregulation of angiogenesis occurs in various pathologies and is one of the hallmarks of cancer. The imbalance of pro- and anti-angiogenic signaling within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and hyperpermeable vessels. The physiological consequences of these vascular abnormalities include temporal and spatial heterogeneity in tumor blood flow and oxygenation and increased tumor interstitial fluid pressure. These abnormalities and the resultant microenvironment fuel tumor progression, and also lead to a reduction in the efficacy of chemotherapy, radiotherapy, and immunotherapy. With the discovery of vascular endothelial growth factor (VEGF) as a major driver of tumor angiogenesis, efforts have focused on novel therapeutics aimed at inhibiting VEGF activity, with the goal of regressing tumors by starvation. Unfortunately, clinical trials of anti-VEGF monotherapy in patients with solid tumors have been largely negative. Intriguingly, the combination of anti-VEGF therapy with conventional chemotherapy has improved survival in cancer patients compared with chemotherapy alone. These seemingly paradoxical results could be explained by a "normalization" of the tumor vasculature by anti-VEGF therapy. Preclinical studies have shown that anti-VEGF therapy changes tumor vasculature towards a more "mature" or "normal" phenotype. This "vascular normalization" is characterized by attenuation of hyperpermeability, increased vascular pericyte coverage, a more normal basement membrane, and a resultant reduction in tumor hypoxia and interstitial fluid pressure. These in turn can lead to an improvement in the metabolic profile of the tumor microenvironment, the delivery and efficacy of exogenously administered therapeutics, the efficacy of radiotherapy and of effector immune cells, and a reduction in number of metastatic cells shed by tumors into circulation in mice. These findings are consistent with data from clinical trials of anti-VEGF agents in patients with various solid tumors. More recently, genetic and pharmacological approaches have begun to unravel some other key regulators of vascular normalization such as proteins that regulate tissue oxygen sensing (PHD2) and vessel maturation (PDGFRß, RGS5, Ang1/2, TGF-ß). Here, we review the pathophysiology of tumor angiogenesis, the molecular underpinnings and functional consequences of vascular normalization, and the implications for treatment of cancer and nonmalignant diseases.
Assuntos
Doença , Neoplasias/irrigação sanguínea , Neoplasias/terapia , Neovascularização Patológica , Inibidores da Angiogênese/uso terapêutico , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Progressão da Doença , Humanos , Sistema Linfático/fisiopatologia , Modelos Cardiovasculares , Neoplasias/patologia , Neoplasias/fisiopatologia , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidoresRESUMO
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Assuntos
Bioensaio/métodos , Neoplasias , Neovascularização Patológica , Animais , Bioensaio/instrumentação , Guias como Assunto , Humanos , Camundongos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologiaRESUMO
Glioblastoma multiforme (GBM) is the most common and highly malignant primary brain tumor, which is virtually incurable due to its therapeutic resistance to radiation and chemotherapy. To develop novel therapeutic approaches for treatment of GBM, we examined the role of miR-378 on tumor growth, angiogenesis, and radiation response in ectopic and orthotopic U87 glioblastoma models. Cell and tumor growth rates, in vitro and in vivo radiation sensitivities, and tumor vascular density were evaluated in U87-GFP and U87-miR-378 tumor lines. Ectopic tumor response to radiation was evaluated under normal blood flow and clamp hypoxic conditions. Results show that in vitro, miR-378 expression moderately increased cell growth rate and plating efficiency, but did not alter radiation sensitivity. U87-miR-378 tumors exhibited a higher transplantation take rate than U87-GFP tumors. In vivo, under oxygenated condition, subcutaneous U87-miR-378 tumors receiving 25 Gy showed a tendency for longer tumor growth delay (TGD) than control U87-GFP tumors. In contrast, under hypoxic condition, U87-miR-378 xenografts exhibited substantially shorter TGD than U87-GFP tumors, indicating that under normal blood flow conditions, U87-miR-378 tumors were substantially more oxygenated than U87-GFP tumors. Intracranial multi-photon laser-scanning microscopy demonstrated increased vascular density of U87-miR-378 versus control U87-GFP tumors. Finally, miR-378 increased TGD following 12 Gy irradiation in U87 intracranial xenografts, and significantly prolonged survival of U87-miR-378 tumor-bearing mice (P = 0.04). In conclusion, higher miR-378 expression in U87-miR-378 cells promotes tumor growth, angiogenesis, radiation-induced TGD, and prolongs survival of orthotopic tumor-bearing hosts. Regulation of VEGFR2 by miR-378 significantly increased vascular density and oxygenation in U87 xenografts.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , MicroRNAs/metabolismo , Tolerância a Radiação , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Xenoenxertos/efeitos da radiação , Humanos , Masculino , Camundongos Nus , Neovascularização Patológica/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Multiplexed, phenotypic, intravital cytometric imaging requires novel fluorophore conjugates that have an appropriate size for long circulation and diffusion and show virtually no nonspecific binding to cells/serum while binding to cells of interest with high specificity. In addition, these conjugates must be stable and maintain a high quantum yield in the in vivo environments. Here, we show that this can be achieved using compact (â¼15 nm in hydrodynamic diameter) and biocompatible quantum dot (QD) -Ab conjugates. We developed these conjugates by coupling whole mAbs to QDs coated with norbornene-displaying polyimidazole ligands using tetrazine-norbornene cycloaddition. Our QD immunoconstructs were used for in vivo single-cell labeling in bone marrow. The intravital imaging studies using a chronic calvarial bone window showed that our QD-Ab conjugates diffuse into the entire bone marrow and efficiently label single cells belonging to rare populations of hematopoietic stem and progenitor cells (Sca1(+)c-Kit(+) cells). This in vivo cytometric technique may be useful in a wide range of structural and functional imaging to study the interactions between cells and between a cell and its environment in intact and diseased tissues.
Assuntos
Anticorpos/imunologia , Pontos Quânticos , Animais , Materiais Biocompatíveis , Camundongos , Camundongos TransgênicosRESUMO
With the current epidemic of obesity, a large number of patients diagnosed with cancer are overweight or obese. Importantly, this excess body weight is associated with tumor progression and poor prognosis. The mechanisms for this worse outcome, however, remain poorly understood. We review here the epidemiological evidence for the association between obesity and cancer, and discuss potential mechanisms focusing on angiogenesis and inflammation. In particular, we will discuss how the dysfunctional angiogenesis and inflammation occurring in adipose tissue in obesity may promote tumor progression, resistance to chemotherapy, and targeted therapies such as anti-angiogenic and immune therapies. Better understanding of how obesity fuels tumor progression and therapy resistance is essential to improve the current standard of care and the clinical outcome of cancer patients. To this end, we will discuss how an anti-diabetic drug such as metformin can overcome these adverse effects of obesity on the progression and treatment resistance of tumors.
Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metformina/uso terapêutico , Neoplasias , Neovascularização Patológica , Obesidade , Animais , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologiaRESUMO
Efficient generation of competent vasculogenic cells is a critical challenge of human induced pluripotent stem (hiPS) cell-based regenerative medicine. Biologically relevant systems to assess functionality of the engineered vessels in vivo are equally important for such development. Here, we report a unique approach for the derivation of endothelial precursor cells from hiPS cells using a triple combination of selection markers--CD34, neuropilin 1, and human kinase insert domain-containing receptor--and an efficient 2D culture system for hiPS cell-derived endothelial precursor cell expansion. With these methods, we successfully generated endothelial cells (ECs) from hiPS cells obtained from healthy donors and formed stable functional blood vessels in vivo, lasting for 280 d in mice. In addition, we developed an approach to generate mesenchymal precursor cells (MPCs) from hiPS cells in parallel. Moreover, we successfully generated functional blood vessels in vivo using these ECs and MPCs derived from the same hiPS cell line. These data provide proof of the principle that autologous hiPS cell-derived vascular precursors can be used for in vivo applications, once safety and immunological issues of hiPS-based cellular therapy have been resolved. Additionally, the durability of hiPS-derived blood vessels in vivo demonstrates a potential translation of this approach in long-term vascularization for tissue engineering and treatment of vascular diseases. Of note, we have also successfully generated ECs and MPCs from type 1 diabetic patient-derived hiPS cell lines and use them to generate blood vessels in vivo, which is an important milestone toward clinical translation of this approach.