Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Blood ; 143(25): 2612-2626, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38551812

RESUMO

ABSTRACT: Immunogenic cell death (ICD) is a form of cell death by which cancer treatments can induce a clinically relevant antitumor immune response in a broad range of cancers. In multiple myeloma (MM), the proteasome inhibitor bortezomib is an ICD inducer and creates durable therapeutic responses in patients. However, eventual relapse and resistance to bortezomib appear inevitable. Here, by integrating patient transcriptomic data with an analysis of calreticulin (CRT) protein interactors, we found that GABA type A receptor-associated protein (GABARAP) is a key player whose loss prevented tumor cell death from being perceived as immunogenic after bortezomib treatment. GABARAP is located on chromosome 17p, which is commonly deleted in patients with high risk MM. GABARAP deletion impaired the exposure of the eat-me signal CRT on the surface of dying MM cells in vitro and in vivo, thus reducing tumor cell phagocytosis by dendritic cells and the subsequent antitumor T-cell response. Low GABARAP was independently associated with shorter survival in patients with MM and reduced tumor immune infiltration. Mechanistically, we found that GABARAP deletion blocked ICD signaling by decreasing autophagy and altering Golgi apparatus morphology, with consequent defects in the downstream vesicular transport of CRT. Conversely, upregulating autophagy using rapamycin restored Golgi morphology, CRT exposure, and ICD signaling in GABARAPKO cells undergoing bortezomib treatment. Therefore, coupling an ICD inducer, such as bortezomib, with an autophagy inducer, such as rapamycin, may improve patient outcomes in MM, in which low GABARAP in the form of del(17p) is common and leads to worse outcomes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Resistencia a Medicamentos Antineoplásicos , Proteínas Associadas aos Microtúbulos , Mieloma Múltiplo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/genética , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Calreticulina/metabolismo , Calreticulina/genética , Morte Celular Imunogênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos
2.
N Engl J Med ; 387(2): 132-147, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35660812

RESUMO

BACKGROUND: In patients with newly diagnosed multiple myeloma, the effect of adding autologous stem-cell transplantation (ASCT) to triplet therapy (lenalidomide, bortezomib, and dexamethasone [RVD]), followed by lenalidomide maintenance therapy until disease progression, is unknown. METHODS: In this phase 3 trial, adults (18 to 65 years of age) with symptomatic myeloma received one cycle of RVD. We randomly assigned these patients, in a 1:1 ratio, to receive two additional RVD cycles plus stem-cell mobilization, followed by either five additional RVD cycles (the RVD-alone group) or high-dose melphalan plus ASCT followed by two additional RVD cycles (the transplantation group). Both groups received lenalidomide until disease progression, unacceptable side effects, or both. The primary end point was progression-free survival. RESULTS: Among 357 patients in the RVD-alone group and 365 in the transplantation group, at a median follow-up of 76.0 months, 328 events of disease progression or death occurred; the risk was 53% higher in the RVD-alone group than in the transplantation group (hazard ratio, 1.53; 95% confidence interval [CI], 1.23 to 1.91; P<0.001); median progression-free survival was 46.2 months and 67.5 months. The percentage of patients with a partial response or better was 95.0% in the RVD-alone group and 97.5% in the transplantation group (P = 0.55); 42.0% and 46.8%, respectively, had a complete response or better (P = 0.99). Treatment-related adverse events of grade 3 or higher occurred in 78.2% and 94.2%, respectively; 5-year survival was 79.2% and 80.7% (hazard ratio for death, 1.10; 95% CI, 0.73 to 1.65). CONCLUSIONS: Among adults with multiple myeloma, RVD plus ASCT was associated with longer progression-free survival than RVD alone. No overall survival benefit was observed. (Funded by the National Heart, Lung, and Blood Institute and others; DETERMINATION ClinicalTrials.gov number, NCT01208662.).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Quimioterapia de Manutenção , Mieloma Múltiplo , Transplante de Células-Tronco , Adulto , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Bortezomib/administração & dosagem , Bortezomib/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Progressão da Doença , Intervalo Livre de Doença , Humanos , Lenalidomida/administração & dosagem , Lenalidomida/efeitos adversos , Quimioterapia de Manutenção/métodos , Melfalan/administração & dosagem , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/cirurgia , Transplante Autólogo
3.
Blood ; 141(21): 2599-2614, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630605

RESUMO

PSMD4/Rpn10 is a subunit of the 19S proteasome unit that is involved with feeding target proteins into the catalytic machinery of the 26S proteasome. Because proteasome inhibition is a common therapeutic strategy in multiple myeloma (MM), we investigated Rpn10 and found that it is highly expressed in MM cells compared with normal plasma cells. Rpn10 levels inversely correlated with overall survival in patients with MM. Inducible knockout or knockdown of Rpn10 decreased MM cell viability both in vitro and in vivo by triggering the accumulation of polyubiquitinated proteins, cell cycle arrest, and apoptosis associated with the activation of caspases and unfolded protein response-related pathways. Proteomic analysis revealed that inhibiting Rpn10 increased autophagy, antigen presentation, and the activation of CD4+ T and natural killer cells. We developed an in vitro AlphaScreen binding assay for high-throughput screening and identified a novel Rpn10 inhibitor, SB699551 (SB). Treating MM cell lines, leukemic cell lines, and primary cells from patients with MM with SB decreased cell viability without affecting the viability of normal peripheral blood mononuclear cells. SB inhibited the proliferation of MM cells even in the presence of the tumor-promoting bone marrow milieu and overcame proteasome inhibitor (PI) resistance without blocking the 20S proteasome catalytic function or the 19S deubiquitinating activity. Rpn10 blockade by SB triggered MM cell death via similar pathways as the genetic strategy. In MM xenograft models, SB was well tolerated, inhibited tumor growth, and prolonged survival. Our data suggest that inhibiting Rpn10 will enhance cytotoxicity and overcome PI resistance in MM, providing the basis for further optimization studies of Rpn10 inhibitors for clinical application.


Assuntos
Mieloma Múltiplo , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Proteômica , Leucócitos Mononucleares/metabolismo , Proteínas de Transporte/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA
4.
Blood ; 141(14): 1724-1736, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603186

RESUMO

High-dose melphalan (HDM) improves progression-free survival in multiple myeloma (MM), yet melphalan is a DNA-damaging alkylating agent; therefore, we assessed its mutational effect on surviving myeloma cells by analyzing paired MM samples collected at diagnosis and relapse in the IFM 2009 study. We performed deep whole-genome sequencing on samples from 68 patients, 43 of whom were treated with RVD (lenalidomide, bortezomib, and dexamethasone) and 25 with RVD + HDM. Although the number of mutations was similar at diagnosis in both groups (7137 vs 7230; P = .67), the HDM group had significantly more mutations at relapse (9242 vs 13 383, P = .005). No change in the frequency of copy number alterations or structural variants was observed. The newly acquired mutations were typically associated with DNA damage and double-stranded breaks and were predominantly on the transcribed strand. A machine learning model, using this unique pattern, predicted patients who would receive HDM with high sensitivity, specificity, and positive prediction value. Clonal evolution analysis showed that all patients treated with HDM had clonal selection, whereas a static progression was observed with RVD. A significantly higher percentage of mutations were subclonal in the HDM cohort. Intriguingly, patients treated with HDM who achieved complete remission (CR) had significantly more mutations at relapse yet had similar survival rates as those treated with RVD who achieved CR. This similarity could have been due to HDM relapse samples having significantly more neoantigens. Overall, our study identifies increased genomic changes associated with HDM and provides rationale to further understand clonal complexity.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/diagnóstico , Melfalan/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Bortezomib/uso terapêutico , Lenalidomida/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Doença Crônica , Transplante Autólogo , Dexametasona/uso terapêutico
5.
Blood ; 141(23): 2841-2852, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36877894

RESUMO

Therapeutic targeting of CDK7 has proven beneficial in preclinical studies, yet the off-target effects of currently available CDK7 inhibitors make it difficult to pinpoint the exact mechanisms behind MM cell death mediated by CDK7 inhibition. Here, we show that CDK7 expression positively correlates with E2F and MYC transcriptional programs in cells from patients with multiple myeloma (MM); its selective targeting counteracts E2F activity via perturbation of the cyclin-dependent kinases/Rb axis and impairs MYC-regulated metabolic gene signatures translating into defects in glycolysis and reduced levels of lactate production in MM cells. CDK7 inhibition using the covalent small-molecule inhibitor YKL-5-124 elicits a strong therapeutic response with minimal effects on normal cells, and causes in vivo tumor regression, increasing survival in several mouse models of MM including a genetically engineered mouse model of MYC-dependent MM. Through its role as a critical cofactor and regulator of MYC and E2F activity, CDK7 is therefore a master regulator of oncogenic cellular programs supporting MM growth and survival, and a valuable therapeutic target providing rationale for development of YKL-5-124 for clinical use.


Assuntos
Quinase Ativadora de Quinase Dependente de Ciclina , Mieloma Múltiplo , Animais , Camundongos , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Mieloma Múltiplo/genética
6.
Blood ; 141(4): 391-405, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36126301

RESUMO

Long noncoding RNAs (lncRNAs) can drive tumorigenesis and are susceptible to therapeutic intervention. Here, we used a large-scale CRISPR interference viability screen to interrogate cell-growth dependency to lncRNA genes in multiple myeloma (MM) and identified a prominent role for the miR-17-92 cluster host gene (MIR17HG). We show that an MIR17HG-derived lncRNA, named lnc-17-92, is the main mediator of cell-growth dependency acting in a microRNA- and DROSHA-independent manner. Lnc-17-92 provides a chromatin scaffold for the functional interaction between c-MYC and WDR82, thus promoting the expression of ACACA, which encodes the rate-limiting enzyme of de novo lipogenesis acetyl-coA carboxylase 1. Targeting MIR17HG pre-RNA with clinically applicable antisense molecules disrupts the transcriptional and functional activities of lnc-17-92, causing potent antitumor effects both in vitro and in vivo in 3 preclinical animal models, including a clinically relevant patient-derived xenograft NSG mouse model. This study establishes a novel oncogenic function of MIR17HG and provides potent inhibitors for translation to clinical trials.


Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Animais , Camundongos , RNA Longo não Codificante/genética , Mieloma Múltiplo/genética , Cromatina , MicroRNAs/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
7.
Haematologica ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049606

RESUMO

Multiple myeloma (MM) is a plasma cell malignancy considered incurable despite the recent therapeutic advances. Effective targeted therapies are therefore needed. Our previous studies proved that inhibiting CDK7 impairs the cell cycle and metabolic programs by disrupting E2F1 and MYC transcriptional activities, making it an appealing therapeutic target for MM. Given that CDK7 and BRD4 operate in two distinct regulatory axes in MM, we hypothesized that targeting these two complementary pathways simultaneously would lead to a deeper and more durable response. Indeed, combination therapy had superior activity against MM cell growth and viability, and induced apoptosis to a greater extent than single-agent therapy in both cell lines and patient cells. This synergistic activity was also observed in Waldenström's Macroglobulinemia (WM) cells and with other inhibitors of E2F1 activity. Dual inhibition effectively impaired the MYC and E2F transcriptional programs and MM tumor growth and progression in xenograft animal models, providing evidence for combination therapy's potential as a therapeutic strategy in MM and WM.

8.
Blood ; 138(20): 1980-1985, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34792571

RESUMO

Immunoglobulin M (IgM) multiple myeloma (MM) is a rare disease subgroup. Its differentiation from other IgM-producing gammopathies such as Waldenström macroglobulinemia (WM) has not been well characterized but is essential for proper risk assessment and treatment. In this study, we investigated genomic and transcriptomic characteristics of IgM-MM samples using whole-genome and transcriptome sequencing to identify differentiating characteristics from non-IgM-MM and WM. Our results suggest that IgM-MM shares most of its defining structural variants and gene-expression profiling with MM, but has some key characteristics, including t(11;14) translocation, chromosome 6 and 13 deletion as well as distinct molecular and transcription-factor signatures. Furthermore, IgM-MM translocations were predominantly characterized by VHDHJH recombination-induced breakpoints, as opposed to the usual class-switching region breakpoints; coupled with its lack of class switching, these data favor a pre-germinal center origin. Finally, we found elevated expression of clinically relevant targets, including CD20 and Bruton tyrosine kinase, as well as high BCL2/BCL2L1 ratio in IgM-MM, providing potential for targeted therapeutics.


Assuntos
Imunoglobulina M/genética , Mieloma Múltiplo/genética , Transcriptoma , Macroglobulinemia de Waldenstrom/genética , Variações do Número de Cópias de DNA , Centro Germinativo/metabolismo , Humanos , Mieloma Múltiplo/diagnóstico , Mutação , Translocação Genética , Macroglobulinemia de Waldenstrom/diagnóstico
9.
Blood ; 136(4): 468-479, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32187357

RESUMO

High protein load is a feature of multiple myeloma (MM), making the disease exquisitely sensitive to proteasome inhibitor (PIs). Despite the success of PIs in improving patient outcome, the majority of patients develop resistance leading to progressive disease; thus, the need to investigate the mechanisms driving the drug sensitivity vs resistance. With the well-recognized chaperone function of 14-3-3 proteins, we evaluated their role in affecting proteasome activity and sensitivity to PIs by correlating expression of individual 14-3-3 gene and their sensitivity to PIs (bortezomib and carfilzomib) across a large panel of MM cell lines. We observed a significant positive correlation between 14-3-3ε expression and PI response in addition to a role for 14-3-3ε in promoting translation initiation and protein synthesis in MM cells through binding and inhibition of the TSC1/TSC2 complex, as well as directly interacting with and promoting phosphorylation of mTORC1. 14-3-3ε depletion caused up to a 50% reduction in protein synthesis, including a decrease in the intracellular abundance and secretion of the light chains in MM cells, whereas 14-3-3ε overexpression or addback in knockout cells resulted in a marked upregulation of protein synthesis and protein load. Importantly, the correlation among 14-3-3ε expression, PI sensitivity, and protein load was observed in primary MM cells from 2 independent data sets, and its lower expression was associated with poor outcome in patients with MM receiving a bortezomib-based therapy. Altogether, these observations suggest that 14-3-3ε is a predictor of clinical outcome and may serve as a potential target to modulate PI sensitivity in MM.


Assuntos
Proteínas 14-3-3/metabolismo , Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mieloma Múltiplo , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Feminino , Humanos , Masculino , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Tumorais Cultivadas
10.
Haematologica ; 107(6): 1410-1426, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34670358

RESUMO

Identification of novel vulnerabilities in the context of therapeutic resistance is emerging as a key challenge for cancer treatment. Recent studies have detected pervasive aberrant splicing in cancer cells, supporting its targeting for novel therapeutic strategies. Here, we evaluated the expression of several spliceosome machinery components in multiple myeloma (MM) cells and the impact of splicing modulation on tumor cell growth and viability. A comprehensive gene expression analysis confirmed the reported deregulation of spliceosome machinery components in MM cells, compared to normal plasma cells from healthy donors, with its pharmacological and genetic modulation resulting in impaired growth and survival of MM cell lines and patient-derived malignant plasma cells. Consistent with this, transcriptomic analysis revealed deregulation of BCL2 family members, including decrease of anti-apoptotic long form of myeloid cell leukemia-1 (MCL1) expression, as crucial for "priming" MM cells for Venetoclax activity in vitro and in vivo, irrespective of t(11;14) status. Overall, our data provide a rationale for supporting the clinical use of splicing modulators as a strategy to reprogram apoptotic dependencies and make all MM patients more vulnerable to BCL2 inhibitors.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Antineoplásicos/uso terapêutico , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas
11.
Blood ; 134(2): 160-170, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31043423

RESUMO

Pharmacologic agents that modulate ubiquitin ligase activity to induce protein degradation are a major new class of therapeutic agents, active in a number of hematologic malignancies. However, we currently have a limited understanding of the determinants of activity of these agents and how resistance develops. We developed and used a novel quantitative, targeted mass spectrometry (MS) assay to determine the relative activities, kinetics, and cell-type specificity of thalidomide and 4 analogs, all but 1 of which are in clinical use or clinical trials for hematologic malignancies. Thalidomide analogs bind the CRL4CRBN ubiquitin ligase and induce degradation of particular proteins, but each of the molecules studied has distinct patterns of substrate specificity that likely underlie the clinical activity and toxicities of each drug. Our results demonstrate that the activity of molecules that induce protein degradation depends on the strength of ligase-substrate interaction in the presence of drug, the levels of the ubiquitin ligase, and the expression level of competing substrates. These findings highlight a novel mechanism of resistance to this class of drugs mediated by competition between substrates for access to a limiting pool of the ubiquitin ligase. We demonstrate that increased expression of a nonessential substrate can lead to decreased degradation of other substrates that are critical for antineoplastic activity of the drug, resulting in drug resistance. These studies provide general rules that govern drug-dependent substrate degradation and key differences between thalidomide analog activity in vitro and in vivo.


Assuntos
Proteólise/efeitos dos fármacos , Talidomida/análogos & derivados , Talidomida/química , Talidomida/farmacologia , Ubiquitina-Proteína Ligases/química , Neoplasias Hematológicas/enzimologia , Humanos , Especificidade por Substrato , Ubiquitina-Proteína Ligases/efeitos dos fármacos
12.
Blood ; 132(10): 1050-1063, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-29997223

RESUMO

The microRNA (miRNA) cluster miR-17-92 is oncogenic and represents a valuable therapeutic target in c-MYC (MYC)-driven malignancies. Here, we developed novel LNA gapmeR antisense oligonucleotides (ASOs) to induce ribonuclease H-mediated degradation of MIR17HG primary transcripts and consequently prevent biogenesis of miR-17-92 miRNAs (miR-17-92s). The leading LNA ASO, MIR17PTi, impaired proliferation of several cancer cell lines (n = 48) established from both solid and hematologic tumors by on-target antisense activity, more effectively as compared with miR-17-92 inhibitors. By focusing on multiple myeloma (MM), we found that MIR17PTi triggers apoptosis via impairment of homeostatic MYC/miR-17-92 feed-forward loops (FFLs) in patient-derived MM cells and induces MYC-dependent synthetic lethality. We show that alteration of a BIM-centered FFL is instrumental for MIR17PTi to induce cytotoxicity in MM cells. MIR17PTi exerts strong in vivo antitumor activity in nonobese diabetic severe combined immunodeficient mice bearing clinically relevant models of MM, with advantageous safety and pharmacokinetic profiles in nonhuman primates. Altogether, MIR17PTi is a novel pharmacological tool to be tested in early-phase clinical trials against MM and other MYC-driven malignancies.


Assuntos
Apoptose/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Oligonucleotídeos/farmacologia , RNA Neoplásico/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Oligonucleotídeos/genética , RNA Longo não Codificante , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Blood ; 132(6): 587-597, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-29884741

RESUMO

Understanding the profile of oncogene and tumor suppressor gene mutations with their interactions and impact on the prognosis of multiple myeloma (MM) can improve the definition of disease subsets and identify pathways important in disease pathobiology. Using integrated genomics of 1273 newly diagnosed patients with MM, we identified 63 driver genes, some of which are novel, including IDH1, IDH2, HUWE1, KLHL6, and PTPN11 Oncogene mutations are significantly more clonal than tumor suppressor mutations, indicating they may exert a bigger selective pressure. Patients with more driver gene abnormalities are associated with worse outcomes, as are identified mechanisms of genomic instability. Oncogenic dependencies were identified between mutations in driver genes, common regions of copy number change, and primary translocation and hyperdiploidy events. These dependencies included associations with t(4;14) and mutations in FGFR3, DIS3, and PRKD2; t(11;14) with mutations in CCND1 and IRF4; t(14;16) with mutations in MAF, BRAF, DIS3, and ATM; and hyperdiploidy with gain 11q, mutations in FAM46C, and MYC rearrangements. These associations indicate that the genomic landscape of myeloma is predetermined by the primary events upon which further dependencies are built, giving rise to a nonrandom accumulation of genetic hits. Understanding these dependencies may elucidate potential evolutionary patterns and lead to better treatment regimens.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Mutagênese , Oncogenes , Células Clonais , Análise Mutacional de DNA , DNA de Neoplasias/genética , Conjuntos de Dados como Assunto , Dosagem de Genes , Estudo de Associação Genômica Ampla , Instabilidade Genômica , Genômica , Humanos , Perda de Heterozigosidade , Mieloma Múltiplo/patologia , Mutação , Prognóstico , Translocação Genética , Resultado do Tratamento , Sequenciamento do Exoma
14.
Blood ; 129(16): 2233-2245, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28096095

RESUMO

Dysregulated oncogenic serine/threonine kinases play a pathological role in diverse forms of malignancies, including multiple myeloma (MM), and thus represent potential therapeutic targets. Here, we evaluated the biological and functional role of p21-activated kinase 4 (PAK4) and its potential as a new target in MM for clinical applications. PAK4 promoted MM cell growth and survival via activation of MM survival signaling pathways, including the MEK-extracellular signal-regulated kinase pathway. Furthermore, treatment with orally bioavailable PAK4 allosteric modulator (KPT-9274) significantly impacted MM cell growth and survival in a large panel of MM cell lines and primary MM cells alone and in the presence of bone marrow microenvironment. Intriguingly, we have identified FGFR3 as a novel binding partner of PAK4 and observed significant activity of KPT-9274 against t(4;14)-positive MM cells. This set of data supports PAK4 as an oncogene in myeloma and provide the rationale for the clinical evaluation of PAK4 modulator in myeloma.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Quinases Ativadas por p21/genética , Regulação Alostérica , Animais , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/enzimologia , Células da Medula Óssea/patologia , Caspases/genética , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromossomos Humanos Par 14 , Cromossomos Humanos Par 4 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/patologia , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Cultura Primária de Células , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Translocação Genética , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases Ativadas por p21/antagonistas & inibidores , Quinases Ativadas por p21/metabolismo
15.
Blood ; 127(9): 1138-50, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26675349

RESUMO

Multiple myeloma (MM) is characterized by a highly unstable genome, with aneuploidy observed in nearly all patients. The mechanism causing this karyotypic instability is largely unknown, but recent observations have correlated these abnormalities with dysfunctional DNA damage response. Here, we show that the NAD(+)-dependent deacetylase SIRT6 is highly expressed in MM cells, as an adaptive response to genomic stability, and that high SIRT6 levels are associated with adverse prognosis. Mechanistically, SIRT6 interacts with the transcription factor ELK1 and with the ERK signaling-related gene. By binding to their promoters and deacetylating H3K9 at these sites, SIRT6 downregulates the expression of mitogen-activated protein kinase (MAPK) pathway genes, MAPK signaling, and proliferation. In addition, inactivation of ERK2/p90RSK signaling triggered by high SIRT6 levels increases DNA repair via Chk1 and confers resistance to DNA damage. Using genetic and biochemical studies in vitro and in human MM xenograft models, we show that SIRT6 depletion both enhances proliferation and confers sensitization to DNA-damaging agents. Our findings therefore provide insights into the functional interplay between SIRT6 and DNA repair mechanisms, with implications for both tumorigenesis and the treatment of MM.


Assuntos
Dano ao DNA , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Sirtuínas/metabolismo , Acetilação , Linhagem Celular Tumoral , Proliferação de Células , Reparo do DNA , Doxorrubicina/farmacologia , Histonas/metabolismo , Humanos , Lisina/metabolismo , Sistema de Sinalização das MAP Quinases , Modelos Biológicos , Mutagênicos/toxicidade , Prognóstico , Proteínas Elk-1 do Domínio ets/metabolismo
16.
Cancer Immunol Immunother ; 65(1): 13-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26559812

RESUMO

While inflammation has been associated with the development and progression of colorectal cancer, the exact role of the inflammatory Th17 pathway remains unclear. In this study, we aimed to determine the relative importance of IL-17A and the master regulator of the Th17 pathway, the transcription factor RORγt, in the sporadic intestinal neoplasia of APC(MIN/+) mice and in human colorectal cancer. We show that levels of IL-17A are increased in human colon cancer as compared to adjacent uninvolved colon. Similarly, naïve helper T cells from colorectal cancer patients are more inducible into the Th17 pathway. Furthermore, IL-17A, IL-21, IL-22, and IL-23 are all demonstrated to be directly mitogenic to human colorectal cancer cell lines. Nevertheless, deficiency of IL-17A but not RORγt is associated with decreased spontaneous intestinal tumorigenesis in the APC(MIN/+) mouse model, despite the fact that helper T cells from RORγt-deficient APC(MIN/+) mice do not secrete IL-17A when subjected to Th17-polarizing conditions and that Il17a expression is decreased in the intestine of RORγt-deficient APC(MIN/+) mice. Differential expression of Th17-associated cytokines between IL-17A-deficient and RORγt-deficient APC(MIN/+) mice may explain the difference in adenoma development.


Assuntos
Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinogênese , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Feminino , Humanos , Masculino , Camundongos
17.
Blood ; 123(17): 2673-81, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24622324

RESUMO

Sp1 transcription factor controls a pleiotropic group of genes and its aberrant activation has been reported in a number of malignancies, including multiple myeloma. In this study, we investigate and report its aberrant activation in Waldenström macroglobulinemia (WM). Both loss of and gain of Sp1 function studies have highlighted a potential oncogenic role of Sp1 in WM. We have further investigated the effect of a small molecule inhibitor, terameprocol (TMP), targeting Sp1 activity in WM. Treatment with TMP inhibited the growth and survival and impaired nuclear factor-κB and signal transducer and activator of transcription activity in WM cells. We next investigated and observed that TMP treatment induced further inhibition of WM cells in MYD88 knockdown WM cells. Moreover, we observed that Bruton's tyrosine kinase, a downstream target of MYD88 signaling pathway, is transcriptionally regulated by Sp1 in WM cells. The combined use of TMP with Bruton's tyrosine kinase or interleukin-1 receptor-associated kinase 1 and 4 inhibitors resulted in a significant and synergistic dose-dependent antiproliferative effect in MYD88-L265P-expressing WM cells. In summary, these results demonstrate Sp1 as an important transcription factor that regulates proliferation and survival of WM cells independent of MYD88 pathway activation, and provide preclinical rationale for clinical development of TMP in WM alone or in combination with inhibitors of MYD88 pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica , Fator 88 de Diferenciação Mieloide/metabolismo , Fator de Transcrição Sp1/metabolismo , Ativação Transcricional , Macroglobulinemia de Waldenstrom/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos SCID , NF-kappa B/metabolismo , Transplante de Neoplasias , Plasmídeos/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo
18.
Blood ; 124(20): 3110-7, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25237203

RESUMO

Recent work has delineated mutational profiles in multiple myeloma and reported a median of 52 mutations per patient, as well as a set of commonly mutated genes across multiple patients. In this study, we have used deep sequencing of RNA from a subset of these patients to evaluate the proportion of expressed mutations. We find that the majority of previously identified mutations occur within genes with very low or no detectable expression. On average, 27% (range, 11% to 47%) of mutated alleles are found to be expressed, and among mutated genes that are expressed, there often is allele-specific expression where either the mutant or wild-type allele is suppressed. Even in the absence of an overall change in gene expression, the presence of differential allelic expression within malignant cells highlights the important contribution of RNA-sequencing in identifying clinically significant mutational changes relevant to our understanding of myeloma biology and also for therapeutic applications.


Assuntos
Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Mutação , Alelos , DNA/genética , Humanos , RNA/genética , Análise de Sequência de RNA
20.
Blood ; 122(7): 1243-55, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23823317

RESUMO

We recently demonstrated that Nicotinamide phosphoribosyltransferase (Nampt) inhibition depletes intracellular NAD⁺ content leading, to autophagic multiple myeloma (MM) cell death. Bortezomib has remarkably improved MM patient outcome, but dose-limiting toxicities and development of resistance limit its long-term utility. Here we observed higher Nampt messenger RNA levels in bortezomib-resistant patient MM cells, which correlated with decreased overall survival. We demonstrated that combining the NAD⁺ depleting agent FK866 with bortezomib induces synergistic anti-MM cell death and overcomes bortezomib resistance. This effect is associated with (1) activation of caspase-8, caspase-9, caspase-3, poly (ADP-ribose) polymerase, and downregulation of Mcl-1; (2) enhanced intracellular NAD⁺ depletion; (3) inhibition of chymotrypsin-like, caspase-like, and trypsin-like proteasome activities; (4) inhibition of nuclear factor κB signaling; and (5) inhibition of angiogenesis. Furthermore, Nampt knockdown significantly enhances the anti-MM effect of bortezomib, which can be rescued by ectopically overexpressing Nampt. In a murine xenograft MM model, low-dose combination FK866 and Bortezomib is well tolerated, significantly inhibits tumor growth, and prolongs host survival. Taken together, these findings indicate that intracellular NAD⁺ level represents a major determinant in the ability of bortezomib to induce apoptosis in MM cells and provide proof of concept for the combination with FK866 as a new strategy to enhance sensitivity or overcome resistance to bortezomib.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , NAD/metabolismo , Recidiva Local de Neoplasia/tratamento farmacológico , Nicotinamida Fosforribosiltransferase/metabolismo , Pirazinas/farmacologia , Acrilamidas/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Bortezomib , Estudos de Casos e Controles , Caspases/genética , Caspases/metabolismo , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos SCID , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/mortalidade , NF-kappa B/genética , NF-kappa B/metabolismo , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/mortalidade , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Análise de Sequência com Séries de Oligonucleotídeos , Piperidinas/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA