Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 213: 113739, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750122

RESUMO

Present in an increasing number of products, UV-filters are continuously discharged into aquatic environments. Despite potential risks for inhabiting organisms are recognized, the effects of UV-filter 4-methylbenzylidenecamphor (4-MBC) on marine invertebrates are poorly investigated. By combining in vitro/in vivo exposures through a multi-biomarker approach on sperms and adults, the present study evaluated how 4-MBC affect the mussel species Mytilus galloprovincialis, providing ecologically relevant information on organisms' responses. From the obtained results, considering mortality as endpoint, sperms revealed a greater sensitivity (EC50:347 µg/L) than adults (EC50: not calculable). From an ecotoxicological perspective, this resulted in a derived threshold concentration (LOEC) of 100 µg/L and 72 µg/L, respectively. Effects at the cell/molecular level were provided by general redox-status imbalance and oxidative stress. Sperms showed functional and structural impairments, hyperactivation and DNA damage, while adults showed physiological, metabolic/energetic dysfunctions, DNA damage and activation of oxidative and biotransformation enzymes. High 4-MBC bioaccumulation was also observed in exposed mussels (BCFs:14.0-32.0 L/kg). These findings suggest that 4-MBC may impair fitness and survival of the broadcast spawning mussel M. galloprovincialis, affecting reproduction success and population growth.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Ecotoxicologia , Alimentos Marinhos , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 336: 122490, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660774

RESUMO

Marine-coastal ecosystems are rapidly transforming because of climate change (CC). At the same time, the impacts of emerging organic contaminants (i.e., organic UV-filters) on these ecosystems are intensifying. In the Mediterranean, the consequences of these disturbances are occurring at a fast pace making this area a potential sentinel site to be investigated. While singular effects of organic UV-filters or CC-related factors on marine biota have been relatively described, their combined impact is still largely unknown. Thus, the objective of this study was to assess the long-term responses of the Mediterranean mussel Mytilus galloprovincialis towards anticipated salinity changes (decreases-S20 or increases-S40) when exposed to environmentally relevant concentrations of the UV-filter 4-methylbenzylidene camphor (4-MBC). An integrated multi-biomarker approach was applied, featuring general and oxidative stress, antioxidant and biotransformation enzyme capacity, energy metabolism, genotoxicity, and neurotoxicity biomarkers. Results showed that both projected salinities, considered separately, exerted non-negligible impacts on mussels' health status, with greater biological impairments found at S 40. Combining both stressors resulted in an evident increase in mussels' susceptibility to the UV-filter, which exacerbated the toxicity of 4-MBC. The dominant influence of salinity in the climate change-contaminant interaction played a crucial role in this outcome. The most severe scenario occurred when S 20 was combined with 4-MBC. In this situation, mussels exhibited a decrease in filtration rate, metabolic capacity and deployment of energy reserves increased, with an upregulation of biotransformation and inhibition of antioxidant enzyme activities. This exposure also led to the observation of cellular and DNA damage, as well as an increase in AChE activity. Furthermore, salinity-dependent bioaccumulation patterns were evaluated revealing that the lowest values in contaminated mussels are found at S 20. Overall, the present findings provide evidence that projected CC/pollutant scenarios may represent high risks for mussels' populations, with global relevant implications for the ecosystem level.

3.
Environ Sci Pollut Res Int ; 30(7): 18480-18490, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36215022

RESUMO

Since the banning of tributyltin, the addition of inorganic (metal oxides) and organic (pesticides, herbicides) biocides in antifouling paint has represented an unavoidable step to counteract biofouling and the resulting biodeterioration of submerged surfaces. Therefore, the development of new methods that balance antifouling efficacy with environmental impact has become a topic of great importance. Among several proposed strategies, natural extracts may represent one of the most suitable alternatives to the widely used toxic biocides. Posidonia oceanica is one of the most representative organisms of the Mediterranean Sea and contains hundreds of bioactive compounds. In this study, we prepared, characterized, and assessed a hydroalcoholic extract of P. oceanica and then compared it to three model species. Together, these four species belong to relevant groups of biofoulers: bacteria (Aliivibrio fischeri), diatoms (Phaeodactylum tricornutum), and serpulid polychaetes (Ficopomatus enigmaticus). We also added the same P. oceanica extract to a PDMS-based coating formula. We tested this coating agent with Navicula salinicola and Ficopomatus enigmaticus to evaluate both its biocidal performance and its antifouling properties. Our results indicate that our P. oceanica extract provides suitable levels of protection against all the tested organisms and significantly reduces adhesion of N. salinicola cells and facilitates their release in low-intensity waterflows.


Assuntos
Alismatales , Incrustação Biológica , Diatomáceas , Desinfetantes , Herbicidas , Desinfetantes/toxicidade , Incrustação Biológica/prevenção & controle , Extratos Vegetais
4.
Environ Pollut ; 328: 121625, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37085101

RESUMO

Non-chemical sources of anthropogenic environmental stress, such as artificial lights, noise and magnetic fields, are still an underestimate factor that may affect the wildlife. Marine environments are constantly subjected to these kinds of stress, especially nearby to urbanized coastal areas. In the present work, the effect of static magnetic fields, associated with submerged electric cables, was evaluated in gametes and early life stages of a serpulid polychaete, namely Ficopomatus enigmaticus. Specifically, biochemical/physiological impairments of sperm, fertilization rate inhibition and incorrect larval development were assessed. We evaluated differences between two selected magnetic field induction values (0.5 and 1 mT) along a range of exposure times (30 min-48 h), for a sound evaluation on this species. We found that a magnetic induction of 1 mT, a typical value that can be found at distance of tens of cm from a submerged cable, may be considered a biologically and ecologically relevant for sessile organisms and for coastal environments more generally. This value exerted statistically significant effects on membranes, DNA integrity, kinetic parameters and mitochondrial activity of sperm cells. Moreover, a significant reduction in fertilization rate was observed in sperm exposed to the same magnetic induction level (1 mT) for 3 h, compared to controls. Regarding early larval stages, 48-h exposure did not affect the correct development. Our results represent a starting point for a future focus of research on magnetic field effects on early life stages of aquatic invertebrates, using model species as representative for reef-forming/encrusting organisms and ecological indicators of soft sediment quality.


Assuntos
Invertebrados , Sêmen , Animais , Masculino , Campos Magnéticos , Espermatozoides , Larva
5.
Environ Sci Pollut Res Int ; 30(7): 17268-17279, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36192589

RESUMO

The traditional use of organic solvents in various branches of industry is being rethought as these compounds very often display high volatility, toxicity and lipophilicity (related to the ability to interact with biological membranes). More recently, developments in the field of Green Chemistry are focusing on the design of more sustainable and cost-effective solvent alternatives like Ionic Liquids (ILs), bio-based solvents and natural deep eutectic solvents (NADESs). The present study aimed at performing an ecotoxicological screening of 15 NADESs using an extensive set of marine and freshwater bioassays, based on different endpoints as the following: immobilization of the crustacean Daphnia magna, growth inhibition of Raphidocelis subcapitata and of Phaeodactylum tricornutum, larval development alterations on the serpulid Ficopomatus enigmaticus and bioluminescence inhibition of Aliivibrio fischeri. What emerged was a general absence of toxicity of all samples. However, both algal assays showed a certain degree of biostimulation, up to over 100% growth increase in respect to controls with 8 out of 15 compounds tested with Raphidocelis subcapitata. Despite NADESs-induced negligible toxicity effects to invertebrates, encouraging their labelling as "sustainable" solvents, the liability of their intentional or accidental release into aquatic systems may represent a serious risk in terms of ecosystem functioning impairments.


Assuntos
Clorofíceas , Líquidos Iônicos , Solventes Eutéticos Profundos , Ecossistema , Solventes/química , Líquidos Iônicos/toxicidade , Líquidos Iônicos/química , Bioensaio
6.
Aquat Toxicol ; 250: 106263, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35939883

RESUMO

Marine-coastal systems have been increasingly exposed to multiple stressors, including anthropogenic pollution and variations of Climate Change (CC) related factors, whose coexistence could create associated environmental and ecotoxicological risks. Among emergent stressors, 4-methylbenzylidenecamphor (4-MBC) and benzophenone-3 (BP-3) UV-filters are compounds widely used in increasing consumer products, resulting in their ubiquity in aquatic environments and possible pressing challenges on gamete susceptibility. Since most marine invertebrates reproduce by external fertilization, after spawning, gametes may be exposed to several pressures, affecting reproductive success and outcome. The present study focuses on the spermiotoxicity of the environmentally relevant UV-filters 4-MBC and BP-3 combined with salinity shifts, as potential modulators of their harmful effects. For this, Mytilus galloprovincialis male gametes were exposed in vitro to environmentally relevant and slightly higher concentrations (1, 10 and 100 µg/L) of 4-MBC or BP-3 under three different salinities (S 20, 30 and 40). Sperm quality endpoints associated with oxidative status, viability, motility, kinetics, and genotoxicity were evaluated. Similarities and differences in sperm responses among all conditions were highlighted by principal coordinates analysis (PCO). Results showed that salinity acting alone posed greater sperms impairments at the lowest (20) and highest (40) tested levels. When salinity acts as a co-varying stressor, salinity-dominant interactive effects resulted evident, especially for 4-MBC at S 40 and BP-3 at S 20. These findings were pointed out as the worst exposure conditions for M. galloprovincialis sperms, since caused major toxicological effects in terms of: (I) oxidative stress, sperm structural impairments, motility and kinetic alterations in 4-MBC-exposed sperms; (II) DNA damage, compromised mitochondrial activity and hyperactivation in BP-3-exposed ones. Overall, it stands out that salinity influences UV-filter toxicological pathways and, thereby, the potential environmental risk of these contaminants on M. galloprovincialis male gametes, especially in an expected salinity stress scenario.


Assuntos
Mytilus , Poluentes Químicos da Água , Animais , Masculino , Salinidade , Sêmen/química , Sêmen/metabolismo , Espermatozoides/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA