RESUMO
Colloidal quantum dots (cQDs), semiconductor materials with widely tunable properties, can be printed in submicrometer patterns through electrohydrodynamic printing, avoiding aggressive photolithography steps. Postprinting ligand exchange determines the final optoelectronic properties of the cQD structures. However, achieving a complete bulk exchange is challenging, and the conventional vibrational analysis lacks the required spatial resolution. Infrared nanospectroscopy enables quantitative analysis of vibrational signals and structural topography on the nanometer scale upon ligand substitution on lead sulfide cQDs. A solution of ethanedithiol led to rapid (â¼60 s) exchange of ≤90% of the ligands, in structures up to â¼750 nm thick. Prolonged exposures (>1 h) caused the degradation of the microstructures, with a systematic removal of cQDs regulated by surface:bulk ratios and solvent interactions. This study establishes a method for the development of devices through a combination of tunable photoactive materials, additive manufacturing of microstructures, and their quantitative nanometer-scale analysis.
RESUMO
Bottom-up synthesized graphene nanoribbons (GNRs) are increasingly attracting interest due to their atomically controlled structure and customizable physical properties. In recent years, a range of GNR-based field-effect transistors (FETs) has been fabricated, with several demonstrating quantum-dot (QD) behavior at cryogenic temperatures. However, understanding the relationship between the cryogenic charge-transport characteristics and the number of the GNRs in the device is challenging, as the length and location of the GNRs in the junction are not precisely controlled. Here, we present a methodology based on a dual-gate FET that allows us to identify different scenarios, such as single GNRs, double or multiple GNRs in parallel, and a single GNR interacting with charge traps. Our dual-gate FET architecture therefore offers a quantitative approach for comprehending charge transport in atomically precise GNRs.
RESUMO
Medical ultrasonic arrays are typically characterized in controlled water baths using measurements by a hydrophone, which can be translated with a positioning stage. Characterization of 3D acoustic fields conventionally requires measurements at each spatial location, which is tedious and time-consuming, and may be prohibitive given limitations of experimental setup (e.g., the bath and stage) and measurement equipment (i.e., the hydrophone). Moreover, with the development of new ultrasound sequences and modalities, multiple measurements are often required to characterize each imaging mode to ensure performance and clinical safety. Acoustic holography allows efficient characterization of source transducer fields based on single plane measurements. In this work, we explore the applicability of a re-radiation method based on the Rayleighâ»Sommerfeld integral to medical imaging array characterization. We show that source fields can be reconstructed at single crystal level at wavelength resolution, based on far-field measurements. This is herein presented for three practical application scenarios: for identifying faulty transducer elements; for characterizing acoustic safety parameters in focused ultrasound sequences from 2D planar measurements; and for estimating arbitrary focused fields based on calibration from an unfocused sound field and software beamforming. The results experimentally show that the acquired pressure fields closely match those estimated using our technique.
RESUMO
The joining of macroscopic films of vertically aligned multiwalled carbon nanotubes (CNTs) to titanium substrates is demonstrated by active vacuum brazing at 820 °C with a Ag-Cu-Ti alloy and at 880 °C with a Cu-Sn-Ti-Zr alloy. The brazing methodology was elaborated in order to enable the production of highly electrically and thermally conductive CNT/metal substrate contacts. The interfacial electrical resistances of the joints were measured to be as low as 0.35 Ω. The improved interfacial transport properties in the brazed films lead to superior electron field-emission properties when compared to the as-grown films. An emission current of 150 µA was drawn from the brazed nanotubes at an applied electric field of 0.6 V µm-1. The improvement in electron field-emission is mainly attributed to the reduction of the contact resistance between the nanotubes and the substrate. The joints have high re-melting temperatures up to the solidus temperatures of the alloys; far greater than what is achievable with standard solders, thus expanding the application potential of CNT films to high-current and high-power applications where substantial frictional or resistive heating is expected.
RESUMO
Wireless medical sensors typically utilize electromagnetic coupling or ultrasound for energy transfer and sensor interrogation. Energy transfer and management is a complex aspect that often limits the applicability of implantable sensor systems. In this work, we report a new passive temperature sensing scheme based on an acoustic metamaterial made of silicon embedded in a polydimethylsiloxane matrix. Compared to other approaches, this concept is implemented without additional electrical components in situ or the need for a customized receiving unit. A standard ultrasonic transducer is used for this demonstration to directly excite and collect the reflected signal. The metamaterial resonates at a frequency close to a typical medical value (5 MHz) and exhibits a high-quality factor. Combining the design features of the metamaterial with the high-temperature sensitivity of the polydimethylsiloxane matrix, we achieve a temperature resolution of 30 mK. This value is below the current standard resolution required in infrared thermometry for monitoring postoperative complications (0.1 K). We fabricated, simulated, in vitro tested, and compared three acoustic sensor designs in the 29-43 °C (~302-316 K) temperature range. With this concept, we demonstrate how our passive metamaterial sensor can open the way toward new zero-power smart medical implant concepts based on acoustic interrogation.
RESUMO
Graphene is an excellent 2D material for vertical organic transistors electrodes due to its weak electrostatic screening and field-tunable work function, in addition to its high conductivity, flexibility and optical transparency. Nevertheless, the interaction between graphene and other carbon-based materials, including small organic molecules, can affect the graphene electrical properties and therefore, the device performances. This work investigates the effects of thermally evaporated C60 (n-type) and Pentacene (p-type) thin films on the in-plane charge transport properties of large area CVD graphene under vacuum. This study was performed on a population of 300 graphene field effect transistors. The output characteristic of the transistors revealed that a C60 thin film adsorbate increased the graphene hole density by (1.65 ± 0.36) × 1012 cm-2, whereas a Pentacene thin film increased the graphene electron density by (0.55 ± 0.54) × 1012 cm-2. Hence, C60 induced a graphene Fermi energy downshift of about 100 meV, while Pentacene induced a Fermi energy upshift of about 120 meV. In both cases, the increase in charge carriers was accompanied by a reduced charge mobility, which resulted in a larger graphene sheet resistance of about 3 kΩ at the Dirac point. Interestingly, the contact resistance, which varied in the range 200 Ω-1 kΩ, was not significantly affected by the deposition of the organic molecules.
RESUMO
With its high mechanical strength and its remarkable thermal and electrical properties, suspended graphene has long been expected to find revolutionary applications in optoelectronics or as a membrane in nano-devices. However, the lack of efficient transfer and patterning processes still limits its potential. In this work, we report an optimized anthracene-based transfer process to suspend few layers of graphene (1-, 2- and 4-layers) in the millimeter range (up to 3 mm) with high reproducibility. We have explored the advantages and limitations for patterning of these membranes with micrometer-resolution by focused ion beam (FIB) and picosecond pulsed laser ablation techniques. The FIB approach offers higher patterning resolution but suffers from the low throughput. We demonstrate that cold laser ablation is a fast and flexible method for micro-structuring of suspended graphene. One promising field of application of ultimately thin, microporous graphene membranes is their use as next-generation cell culture supports as alternative to track-etched polymer membranes, which often exhibit poor permeability and limited cell-to-cell communication across the membranes. To this end, we confirmed good adhesion and high viability of placental trophoblast cells cultivated on suspended porous graphene membranes without rupturing of the membranes. Overall, there is high potential for the further development of ultrathin suspended graphene membranes for many future applications, including their use for biobarrier cell culture models to enable predictive transport and toxicity assessment of drugs, environmental pollutants, and nanoparticles.
Assuntos
Grafite , Feminino , Gravidez , Humanos , Membranas Artificiais , Reprodutibilidade dos Testes , Placenta , Técnicas de Cultura de CélulasRESUMO
Among the family of 2D materials, graphene is the ideal candidate as top or interlayer electrode for hybrid van der Waals heterostructures made of organic thin films and 2D materials due to its high conductivity and mobility and its inherent ability of forming neat interfaces without diffusing in the adjacent organic layer. Understanding the charge injection mechanism at graphene/organic semiconductor interfaces is therefore crucial to develop organic electronic devices. In particular, Gr/C60 interfaces are promising building blocks for future n-type vertical organic transistors exploiting graphene as tunneling base electrode in a two back-to-back Gr/C60 Schottky diode configuration. This work delves into the charge transport mechanism across Au/C60/Gr vertical heterostructures fabricated on Si/SiO2 using a combination of techniques commonly used in the semiconductor industry, where a resist-free CVD graphene layer functions as a top electrode. Temperature-dependent electrical measurements show that the transport mechanism is injection limited and occurs via Fowler-Nordheim tunneling at low temperature, while it is dominated by a nonideal thermionic emission at room and high temperatures, with energy barriers at room temperature of ca. 0.58 and 0.65 eV at the Gr/C60 and Au/C60 interfaces, respectively. Impedance spectroscopy confirms that the organic semiconductor is depleted, and the energy band diagram results in two electron blocking interfaces. The resulting rectifying nature of the Gr/C60 interface could be exploited in organic hot electron transistors and vertical organic permeable-base transistors.
RESUMO
We report a study on the relationship between the structure and electron transport properties of nanoscale graphene/pentacene interfaces. We fabricated graphene/pentacene interfaces from 10 to 30 nm thick needle-like pentacene nanostructures down to two-three layer (2L-3L) dendritic pentacene islands, and we measured their electron transport properties by conductive atomic force microscopy (C-AFM). The energy barrier at the interfaces, i.e., the energy position of the pentacene highest occupied molecular orbital (HOMO) with respect to the Fermi energy of graphene and the C-AFM metal tip was determined and discussed with an appropriate electron transport model (a double Schottky diode model and a Landauer-Buttiker model, respectively) taking into account the voltage-dependent charge doping of graphene. In both types of samples, the energy barrier at the graphene/pentacene interface is slightly larger than that at the pentacene/metal tip interface, resulting in 0.47-0.55 eV and 0.21-0.34 eV, respectively, for the 10-30 nm thick needle-like pentacene islands, and 0.92-1.44 eV and 0.67-1.05 eV, respectively, for the 2L-3L thick dendritic pentacene nanostructures. We attribute this difference to the molecular organization details of the pentacene/graphene heterostructures, with pentacene molecules lying flat on graphene in the needle-like pentacene nanostructures, while standing upright in the 2L-3L dendritic islands, as observed from Raman spectroscopy.
RESUMO
Hybrid van der Waals heterostructures based on 2D materials and/or organic thin films are being evaluated as potential functional devices for a variety of applications. In this context, the graphene/organic semiconductor (Gr/OSC) heterostructure could represent the core element to build future vertical organic transistors based on two back-to-back Gr/OSC diodes sharing a common graphene sheet, which functions as the base electrode. However, the assessment of the Gr/OSC potential still requires a deeper understanding of the charge carrier transport across the interface as well as the development of wafer-scale fabrication methods. This work investigates the charge injection and transport across Au/OSC/Gr vertical heterostructures, focusing on poly(3-hexylthiophen-2,5-diyl) as the OSC, where the PMMA-free graphene layer functions as the top electrode. The structures are fabricated using a combination of processes widely exploited in semiconductor manufacturing and therefore are suited for industrial upscaling. Temperature-dependent current-voltage measurements and impedance spectroscopy show that the charge transport across both device interfaces is injection-limited by thermionic emission at high bias, while it is space charge limited at low bias, and that the P3HT can be assumed fully depleted in the high bias regime. From the space charge limited model, the out-of-plane charge carrier mobility in P3HT is found to be equal to µ ≈ 2.8 × 10-4 cm2 V-1 s-1, similar to the in-plane mobility reported in previous works, while the charge carrier density is N0 ≈ 1.16 × 1015 cm-3, also in agreement with previously reported values. From the thermionic emission model, the energy barriers at the Gr/P3HT and Au/P3HT interfaces result in 0.30 eV and 0.25 eV, respectively. Based on the measured barriers heights, the energy band diagram of the vertical heterostructure is proposed under the hypothesis that P3HT is fully depleted.
RESUMO
Air-coupled ultrasound (ACU) is increasingly used for nondestructive testing (NDT). With ACU, no contact or coupling agent (e.g., water and ultrasound gel) is needed between transducers and test sample, which provides high measurement reproducibility. However, for testing in production, a minimum separation is often necessary between the sample and the transducers to avoid contamination or transducer damage. Due to wave diffraction, the collimation of the ultrasound beam decreases for larger propagation distances, and ACU images become blurred and show lower defect lateral resolution with increasing sample-transducer separation. This is especially critical to thick composites, where large-size planar sources are used to bridge the large ACU transmission loss with good collimation. In this work, ACU reradiation in unbounded media is extended to NDT of multilayered composites. The extended method is named ACU time reversal (ACU-TR) and significantly improves the defect resolution of ACU imaging. With ACU-TR, the complete pressure distribution radiated by large ACU source is measured with point receivers (RXs) in one plane arbitrarily separated from the sample. By applying acoustic holography physics, it is then possible to quantitatively reconstruct the pressure field directly at arbitrary sample defect planes, which compensates for undesired diffraction phenomena and improves minimum detectable defect size, thereby achieving subwavelength lateral resolution. We tested the method on complex wood-based composite samples based on the ACU far-field measurements at a separation of 160 mm between the sample and the RX transducer. With the proposed method, it is possible to detect surface defects as well as inner defects within composite boards. In the future, by using point RX arrays instead of a scanned microphone, both data acquisition and evaluation can be potentially implemented in real time.
RESUMO
A major evolutionary force driving functionally referential alarm calls is the need for different strategies to escape various predator types in complex structured habitats. In contrast, a single escape strategy appears to be sufficient in less-structured open habitats, and under such conditions urgency-dependent alarm calls may be favored. Nevertheless, some species, such as meerkats (Suricata suricatta), have evolved functionally referential alarm calls despite living in open areas, using only bolt-holes for retreat. To understand the evolution of different alarm call systems, we investigated the calls of sympatric Cape ground squirrels (Xerus inauris) and compared their antipredator and foraging behavior with that of meerkats. Cape ground squirrels emitted urgency-dependent alarm calls and responded to playbacks depending on urgency, not predator type. Vigilance behavior and habitat use differed between the two species. Meerkats roam widely to find prey and for efficient foraging depend on coordinated predator vigilance and escape behavior. As herbivores with smaller territories, Cape ground squirrels depend less on coordinated antipredator behavior, and urgency-dependent alarm calls encode all essential information. We conclude that habitat complexity does not explain the evolution of functionally referential alarm calls in all species, and other constraints, such as the need to coordinate group movements to maintain foraging efficiency, could be more relevant.
Assuntos
Comunicação Animal , Evolução Biológica , Herpestidae/fisiologia , Sciuridae/fisiologia , Estimulação Acústica , Acústica , Animais , Aves , Reação de Fuga , Comportamento Predatório , Serpentes , Especificidade da EspécieRESUMO
Quantitative and reproducible air-coupled ultrasound (ACU) testing requires characterization of the volumetric pressure fields radiated by ACU probes. In this paper, a closed-form reradiation method combining the Rayleigh-Sommerfeld integral and time-reversal acoustics is proposed, which allows calculation of both near- field and far-field based on a single-plane measurement. The method was validated for both 3-D (circular, square) and 2-D (rectangular) planar transducers in the 50-230 kHz range. The pressure fields were scanned with a calibrated microphone. The measurement window was at least four times the size of the transducer area and the grid step size was one third of the wavelength. Best results were observed by acquiring the measurement plane at near-field distance. The method accurately reproduces pulsed ultrasound waveforms and pressure distributions (RMSE <2.5% in far field and <5.5% in near field), even at the transducer radiation surface. The effects of speed of sound drifts during the scan in the pressure were negligible (RMSE <0.3%). The reradiation method clearly outperforms conventional baffled piston models. Possible applications are transducer manufacture control (imperfections at radiation surface) and calibration (on-axis pressure, side lobes, and beamwidth) together with generation of accurate source functions for quantitative nondestructive evaluation inverse problems.
RESUMO
Assessing the role of local populations in a landscape context has become increasingly important in the fields of conservation biology and ecology. A growing number of studies attempt to determine the source-sink status of local populations. As the source-sink concept is commonly used for management decisions in nature conservation, accurate assessment approaches are crucial. Based on a systematic literature review of studies published between 2002 and 2013, we evaluated a priori predictions on methodological and biological factors that may influence the occurrence of source or sink populations. The review yielded 90 assessments from 73 publications that included qualitative and quantitative evidence for either source or sink population(s) for one or multiple species. Overall, sink populations tended to occur more often than source populations. Moreover, the occurrence of source or sink populations differed among taxonomic classes. Sinks were more often found than sources in mammals, while there was a non-significant trend for the opposite to be true for amphibians. Univariate and multivariate analyses showed that the occurrence of sources was positively related to connectivity of local populations. Our review furthermore highlights that more than 25 years after Pulliam's widely cited publication on 'sources, sinks, and population regulation', in-depth assessments of the source-sink status of populations based on combined consideration of demographic parameters such as fecundity, survival, emigration and immigration are still scarce. To increase our understanding of source-sink systems from ecological, evolutionary and conservation-related perspectives, we recommend that forthcoming studies on source-sink dynamics should pay more attention to the study design (i.e. connectivity of study populations) and that the assessment of the source-sink status of local populations is based on λ values calculated from demographic rates.
Assuntos
Ecossistema , Animais , Evolução Biológica , Demografia , Dinâmica Populacional , Pesquisa/normas , Pesquisa/tendênciasRESUMO
Reliable non-destructive testing (NDT) ultrasound systems for timber composite structures require quantitative understanding of the propagation of ultrasound beams in wood. A finite-difference time-domain (FDTD) model is described, which incorporates local anisotropy variations of stiffness, damping and density in timber elements. The propagation of pulsed air-coupled ultrasound (ACU) beams in normal and slanted incidence configurations is reproduced by direct definition of material properties (gas, solid) at each model pixel. First, the model was quantitatively validated against analytical derivations. Time-varying wavefronts in unbounded timber with curved growth rings were accurately reproduced, as well as the acoustic properties (velocity, attenuation, beam skewing) of ACU beams transmitted through timber lamellas. An experimental sound field imaging (SFI) setup was implemented at NDT frequencies (120 kHz), which for specific beam incidence positions allows spatially resolved ACU field characterization at the receiver side. The good agreement of experimental and modeled beam shifts across timber laminates allowed extrapolation of the inner propagation paths. The modeling base is an orthotropic stiffness dataset for the desired wood species. In cross-grain planes, beam skewing leads to position-dependent wave paths. They are well-described in terms of the growth ring curvature, which is obtained by visual observation of the laminate. Extraordinary refraction phenomena were observed, which lead to well-collimated quasi-shear wave coupling at grazing beam incidence angles. The anisotropic damping in cross-grain planes is satisfactorily explained in terms of the known anisotropic stiffness dataset and a constant loss tangent. The incorporation of high-resolution density maps (X-ray computed tomography) provided insight into ultrasound scattering effects in the layered growth ring structure. Finally, the combined potential of the FDTD model and the SFI setup for material property and defect inversion in anisotropic materials was demonstrated. A portable SFI demonstrator was implemented with a multi-sensor MEMs receiver array that captures and compensates for variable wave propagation paths in glued laminated timber, and improves the imaging of lamination defects.
RESUMO
OBJECTIVE: We tested the purported complex relationships between alexithymia and somatization, depression, borderline pathology and general health. METHODS: A total of 139 medical students and 84 members of nursing personnel completed questionnaires. RESULTS: Thirteen (6%) alexithymic participants indicated more depression and borderline pathology and worse mental health. Path analysis confirmed a significant positive effect of borderline pathology and a significant negative effect of mental health on alexithymia but did not reveal any effects of somatization and depression. CONCLUSION: Presence of borderline pathology may indicate higher probability of alexithymia.
Assuntos
Sintomas Afetivos/psicologia , Depressão/psicologia , Transtornos Somatoformes/psicologia , Adulto , Estudos Transversais , Feminino , Nível de Saúde , Humanos , MasculinoRESUMO
Non-destructive assessment of delaminations in glued laminated timber structures is required during their full life cycle. A novel air-coupled ultrasound (ACU) method has been developed, which is able to separately detect delaminations in individual bonding planes of arbitrarily high and long laminated stacks and typically 200 mm wide. The 120 kHz ACU transmitter-receiver pair is positioned at two opposite lateral faces of the sample, with a small inclination with respect to the inspected bonding planes, so that an ultrasound beam is excited at a user-defined refraction angle within the sample, interacting with defects in a limited height portion of the stack. The attenuation of the ultrasound beam transmitted across the defect (negative detection) provided better sensitivity to defects than the scattered fields (positive detection), which are masked by spurious fields. Dedicated finite-difference time-domain (FDTD) simulations provided understanding on the wave propagation and defect detectability limits, with respect to the heterogeneous anisotropic material structure introduced by the curvature of the annual rings in individual timber lamellas. A simplified analytical expression was derived to calculate refraction angles in timber in function of insonification angle and ring angle. Experimental results show that the method is able to detect >20% wide defects in both isotropic material and in glulam with straight year rings, and >50% wide and 100mm long defects in commercial glulam beams. The discrimination of defects from background variability is optimized by normalizing the images with respect to reference defect-free sample sections (normalization) or previous measurements (difference imaging), and by combining readings obtained with distinct ultrasound beam refraction angles (spatial diversity). Future work aims at the development of a tomographic defect inspection by combining the described theoretical and experimental methods.
RESUMO
We tested the hypothesis that different traumatic experiences will contribute in variable degree to different mental pathologies. A total of 223 young adult non-patients were assessed with the help of self-reports. The role of six different trauma experiences (broken home, dysfunctional family, family violence, child sexual abuse, child severe sexual abuse and adult sexual abuse) in six different conditions/pathologies (alexithymia, depression, somatization, borderline, overall physical health and overall mental health) was tested in a series of multivariate analyses of variance and of Roy-Bargmann stepdown analyses. The hypothesis was confirmed: Individual traumatic experiences were indeed associated with different pathologies. Specifically, sexual abuse predicted borderline pathology, severe child sexual abuse somatization, and dysfunctional or broken family depression. Family violence was associated with worse overall mental health and alexithymia, whereas no trauma variable could be identified to be associated with overall physical health. Most of these individual relationships were reported in the literature, based on results obtained in different clinical samples. Our results were won in a sample of young non-patients controlling for overlap between pathologies.