Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(3): 2713-2740, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534787

RESUMO

HER2-positive breast cancer is one of the most prevalent forms of cancer among women worldwide. Generally, the molecular characteristics of this breast cancer include activation of human epidermal growth factor receptor-2 (HER2) and hormone receptor activation. HER2-positive is associated with a higher death rate, which led to the development of a monoclonal antibody called trastuzumab, specifically targeting HER2. The success rate of HER2-positive breast cancer treatment has been increased; however, drug resistance remains a challenge. This fact motivated us to explore the underlying molecular mechanisms of trastuzumab resistance. For this purpose, a two-fold approach was taken by considering well-known breast cancer cell lines SKBR3 and BT474. In the first fold, trastuzumab treatment doses were optimized separately for both cell lines. This was done based on the proliferation rate of cells in response to a wide variety of medication dosages. Thereafter, each cell line was cultivated with a steady dosage of herceptin for several months. During this period, six time points were selected for further in vitro analysis, ranging from the untreated cell line at the beginning to a fully resistant cell line at the end of the experiment. In the second fold, nucleic acids were extracted for further high throughput-based microarray experiments of gene and microRNA expression. Such expression data were further analyzed in order to infer the molecular mechanisms involved in the underlying development of trastuzumab resistance. In the list of differentially expressed genes and miRNAs, multiple genes (e.g., BIRC5, E2F1, TFRC, and USP1) and miRNAs (e.g., hsa miR 574 3p, hsa miR 4530, and hsa miR 197 3p) responsible for trastuzumab resistance were found. Downstream analysis showed that TFRC, E2F1, and USP1 were also targeted by hsa-miR-8485. Moreover, it indicated that miR-4701-5p was highly expressed as compared to TFRC in the SKBR3 cell line. These results unveil key genes and miRNAs as molecular regulators for trastuzumab resistance.

2.
Hered Cancer Clin Pract ; 13(1): 8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798211

RESUMO

BACKGROUND: Differentiated thyroid carcinoma (DTC) originates from thyroid follicular epithelial cells and belongs to a group of slowly progressing tumors with a relatively good prognosis. However, recurrences and metastases are a serious problem in advanced stages. Furthermore, progression from a well differentiated thyroid carcinoma to an aggressive anaplastic one is possible. The majority of differentiated thyroid carcinomas are sporadic but a few alleles increasing the cancer risk are known. One of them is the c.470 T > C (p.I157T, rs17879961) missense substitution in the CHEK2 gene. AIM OF THE STUDY: The aim of this study was to investigate whether this specific CHEK2 alteration, c.470 T > C, predisposes the Great Poland (Wielkopolska) population to thyroid cancer. METHODS: 602 differentiated thyroid carcinoma patients and 829 controls randomly selected from population were genotyped for the presence of the c.470C allele using pyrosequencing. Hardy-Weinberg Equilibrium (HWE) was tested for both groups by chi-square distribution and Fisher's exact test. The odds ratios (ORs), 95% confidence intervals (CIs), and p-values were calculated using the R software. RESULTS: The results of genotyping showed the presence of the c.470C allele in 51 patients with a frequency of 4.49%, while in a controls in 42 patients with a frequency of 2.53%. We demonstrated that in the Great Poland population the c.470C CHEK2 variant increases the risk of developing differentiated thyroid cancer almost twice (OR = 1.81, p = 0.004). The risk of papillary thyroid carcinoma in female patients homozygous for the c.470C allele was shown to increase almost 13-fold (OR = 12.81, p = 0.019). CONCLUSIONS: Identification of c.470C CHEK2 gene variant ought to be taken into account by healthcare policymakers. Future well-designed and larger population studies are of great value in confirming these findings. Moreover, a combination of genetic factors together with environmental exposures should also be considered.

3.
Comput Biol Chem ; 111: 108094, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38781748

RESUMO

DNA methylation is an important epigenetic modification involved in gene regulation. Advances in the next generation sequencing technology have enabled the retrieval of DNA methylation information at single-base-resolution. However, due to the sequencing process and the limited amount of isolated DNA, DNA-methylation-data are often noisy and sparse, which complicates the identification of differentially methylated regions (DMRs), especially when few replicates are available. We present a varying-coefficient model for detecting DMRs by using single-base-resolved methylation information. The model simultaneously smooths the methylation profiles and allows detection of DMRs, while accounting for additional covariates. The proposed model takes into account possible overdispersion by using a beta-binomial distribution. The overdispersion itself can be modeled as a function of the genomic region and explanatory variables. We illustrate the properties of the proposed model by applying it to two real-life case studies.


Assuntos
Metilação de DNA , Análise de Sequência de DNA , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala
4.
J Comput Biol ; 27(8): 1232-1247, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31895597

RESUMO

RNA sequencing (RNA-seq) is widely used to study gene-, transcript-, or exon expression. To quantify the expression level, millions of short sequenced reads need to be mapped back to a reference genome or transcriptome. Read mapping makes it possible to find a location to which a read is identical or similar. Based upon this alignment, expression summaries, that is, read counts are generated. However, reads may be matched to multiple locations. Such ambiguously mapped reads are often ignored in the analysis, which is a potential loss of information and may cause bias in expression estimation. We present the general principles underlying multiread allocation and unbiased estimation of the expression level of genes, exons, or transcripts in the presence of multiple mapped reads. The underlying principles are derived from a theoretical concept that identifies important sources of information such as the number of uniquely mapped reads, the total target length, and the length of the shared target regions. We show with simulation studies that methods incorporating some or all of the aforementioned sources of information estimate the expression levels of genes, exons, and/or transcripts with a higher precision and accuracy than methods that do not use this information. We identify important sources of information that should be taken into account by methods that estimate the abundance of genes, exons, and/or transcripts to achieve good precision and accuracy.


Assuntos
Biologia Computacional/tendências , Análise de Sequência de RNA , Software , Transcriptoma/genética , Éxons/genética , Perfilação da Expressão Gênica , Genoma/genética
5.
J Comput Biol ; 26(12): 1339-1348, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31314581

RESUMO

Experimental designs such as matched-pair or longitudinal studies yield mRNA sequencing (mRNA-Seq) counts that are correlated across samples. Most of the approaches for the analysis of correlated mRNA-Seq data are restricted to a specific design and/or balanced data only (with the same number of samples in each group). We propose a model that is applicable to the analysis of correlated mRNA-Seq data of different types: paired, clustered, longitudinal, or others. Any combination of explanatory variables, as well as unbalanced data, can be processed within the proposed modeling framework. The model assumes that exon counts of a particular gene of an individual sample jointly follow a multivariate negative-binomial distribution. Additional correlation between exon counts obtained for, for example, individual samples within the same pair or cluster, is taken into account by including into the model a cluster-level normally distributed random effect. An interesting feature of the model is that it provides explicit expression for marginal correlation between exon counts at different levels. The performance of the model is evaluated by using a simulation study and an analysis of two real-life data sets: a paired mRNA-Seq experiment for 24 patients with clear-cell renal-cell carcinoma and a longitudinal mRNA-Seq experiment for 29 patients with Lyme disease.


Assuntos
Perfilação da Expressão Gênica , Modelos Estatísticos , RNA Mensageiro/genética , Análise de Sequência de RNA , Animais , Carcinoma de Células Renais/genética , Simulação por Computador , Humanos , Neoplasias Renais/genética , Estudos Longitudinais , Doença de Lyme/genética , Doença de Lyme/parasitologia , Análise Multivariada , RNA Mensageiro/metabolismo , Carrapatos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA