Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Annu Rev Phys Chem ; 75(1): 111-135, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38360527

RESUMO

Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.

2.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38856060

RESUMO

We report the development and testing of new integrated cyberinfrastructure for performing free energy simulations with generalized hybrid quantum mechanical/molecular mechanical (QM/MM) and machine learning potentials (MLPs) in Amber. The Sander molecular dynamics program has been extended to leverage fast, density-functional tight-binding models implemented in the DFTB+ and xTB packages, and an interface to the DeePMD-kit software enables the use of MLPs. The software is integrated through application program interfaces that circumvent the need to perform "system calls" and enable the incorporation of long-range Ewald electrostatics into the external software's self-consistent field procedure. The infrastructure provides access to QM/MM models that may serve as the foundation for QM/MM-ΔMLP potentials, which supplement the semiempirical QM/MM model with a MLP correction trained to reproduce ab initio QM/MM energies and forces. Efficient optimization of minimum free energy pathways is enabled through a new surface-accelerated finite-temperature string method implemented in the FE-ToolKit package. Furthermore, we interfaced Sander with the i-PI software by implementing the socket communication protocol used in the i-PI client-server model. The new interface with i-PI allows for the treatment of nuclear quantum effects with semiempirical QM/MM-ΔMLP models. The modular interoperable software is demonstrated on proton transfer reactions in guanine-thymine mispairs in a B-form deoxyribonucleic acid helix. The current work represents a considerable advance in the development of modular software for performing free energy simulations of chemical reactions that are important in a wide range of applications.

3.
Chemphyschem ; 24(5): e202200819, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36385485

RESUMO

The reaction of N2 O5 at atmospheric interfaces has recently received considerable attention due to its importance in atmospheric chemistry. N2 O5 reacts preferentially with Cl- to form ClNO2 /NO3 - (Cl- substitution), but can also react with H2 O to form 2HNO3 (hydrolysis). In this paper, we explore these competing reactions in a theoretical study of the clusters N2 O5 /Cl- /nH2 O (n=2-5), resulting in the identification of three reaction motifs. First, we uncovered an SN 2-type Cl- substitution reaction of N2 O5 that occurs very quickly due to low barriers to reaction. Second, we found a low-lying pathway to hydrolysis via a ClNO2 intermediate (two-step hydrolysis). Finally, we found a direct hydrolysis pathway where H2 O attacks N2 O5 (one-step hydrolysis). We find that Cl- substitution is the fastest reaction in every cluster. Between one-step and two-step hydrolysis, we find that one-step hydrolysis barriers are lower, making two-step hydrolysis (via ClNO2 intermediate) likely only when concentrations of Cl- are high.

4.
J Chem Inf Model ; 63(3): 711-717, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36720086

RESUMO

We have ported and optimized the graphics processing unit (GPU)-accelerated QUICK and AMBER-based ab initio quantum mechanics/molecular mechanics (QM/MM) implementation on AMD GPUs. This encompasses the entire Fock matrix build and force calculation in QUICK including one-electron integrals, two-electron repulsion integrals, exchange-correlation quadrature, and linear algebra operations. General performance improvements to the QUICK GPU code are also presented. Benchmarks carried out on NVIDIA V100 and AMD MI100 cards display similar performance on both hardware for standalone HF/DFT calculations with QUICK and QM/MM molecular dynamics simulations with QUICK/AMBER. Furthermore, with respect to the QUICK/AMBER release version 21, significant speedups are observed for QM/MM molecular dynamics simulations. This significantly increases the range of scientific problems that can be addressed with open-source QM/MM software on state-of-the-art computer hardware.


Assuntos
Simulação de Dinâmica Molecular , Software , Computadores , Teoria Quântica , Teoria da Densidade Funcional
6.
Chemphyschem ; 23(7): e202100831, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35142420

RESUMO

Mössbauer isomer shift and quadrupole splitting properties have been calculated using the OLYP-D3(BJ) density functional method on previously obtained (W.-G. Han Du, et al., Inorg Chem. 2020, 59, 8906-8915) geometry optimized Fea33+ -H2 O-CuB2+ dinuclear center (DNC) clusters of the resting oxidized (O state) "as-isolated" cytochrome c oxidase (CcO). The calculated results are highly consistent with the available experimental observations. The calculations have also shown that the structural heterogeneities of the O state DNCs implicated by the Mössbauer experiments are likely consequences of various factors, particularly the variable positions of the central H2 O molecule between the Fea33+ and CuB2+ sites in different DNCs, whether or not this central H2 O molecule has H-bonding interaction with another H2 O molecule, the different spin states having similar energies for the Fea33+ sites, and whether the Fea33+ and CuB2+ sites are ferromagnetically or antiferromagnetically spin-coupled.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons , Teoria da Densidade Funcional , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Oxirredução
7.
J Chem Inf Model ; 61(5): 2109-2115, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33913331

RESUMO

The quantum mechanics/molecular mechanics (QM/MM) approach is an essential and well-established tool in computational chemistry that has been widely applied in a myriad of biomolecular problems in the literature. In this publication, we report the integration of the QUantum Interaction Computational Kernel (QUICK) program as an engine to perform electronic structure calculations in QM/MM simulations with AMBER. This integration is available through either a file-based interface (FBI) or an application programming interface (API). Since QUICK is an open-source GPU-accelerated code with multi-GPU parallelization, users can take advantage of "free of charge" GPU-acceleration in their QM/MM simulations. In this work, we discuss implementation details and give usage examples. We also investigate energy conservation in typical QM/MM simulations performed at the microcanonical ensemble. Finally, benchmark results for two representative systems in bulk water, the N-methylacetamide (NMA) molecule and the photoactive yellow protein (PYP), show the performance of QM/MM simulations with QUICK and AMBER using a varying number of CPU cores and GPUs. Our results highlight the acceleration obtained from a single or multiple GPUs; we observed speedups of up to 53× between a single GPU vs a single CPU core and of up to 2.6× when comparing four GPUs to a single GPU. Results also reveal speedups of up to 3.5× when the API is used instead of FBI.


Assuntos
Simulação de Dinâmica Molecular , Software , Física , Proteínas , Água
8.
J Chem Phys ; 155(12): 124801, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34598567

RESUMO

Many-body potential energy functions (MB-PEFs), which integrate data-driven representations of many-body short-range quantum mechanical interactions with physics-based representations of many-body polarization and long-range interactions, have recently been shown to provide high accuracy in the description of molecular interactions from the gas to the condensed phase. Here, we present MB-Fit, a software infrastructure for the automated development of MB-PEFs for generic molecules within the TTM-nrg (Thole-type model energy) and MB-nrg (many-body energy) theoretical frameworks. Besides providing all the necessary computational tools for generating TTM-nrg and MB-nrg PEFs, MB-Fit provides a seamless interface with the MBX software, a many-body energy and force calculator for computer simulations. Given the demonstrated accuracy of the MB-PEFs, particularly within the MB-nrg framework, we believe that MB-Fit will enable routine predictive computer simulations of generic (small) molecules in the gas, liquid, and solid phases, including, but not limited to, the modeling of quantum isomeric equilibria in molecular clusters, solvation processes, molecular crystals, and phase diagrams.

9.
Inorg Chem ; 59(13): 8906-8915, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525689

RESUMO

Although the dinuclear center (DNC) of the resting oxidized "as-isolated" cytochrome c oxidase (CcO) is not a catalytically active state, its detailed structure, especially the nature of the bridging species between the Fea33+ and CuB2+ metal sites, is still both relevant and unsolved. Recent crystallographic work has shown an extended electron density for a peroxide type dioxygen species (O1-O2) bridging the Fea3 and CuB centers. In this paper, our density functional theory (DFT) calculations show that the observed peroxide type electron density between the two metal centers is most likely a mistaken analysis due to overlap of the electron density of a water molecule located at different positions between apparent O1 and O2 sites in DNCs of different CcO molecules with almost the same energy. Because the diffraction pattern and the resulting electron density map represent the effective long-range order averaged over many molecules and unit cells in the X-ray structure, this averaging can lead to an apparent observed superposition of different water positions between the Fea33+ and CuB2+ metal sites.


Assuntos
Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Ferro/química , Água/química , Teoria da Densidade Funcional , Modelos Químicos
10.
Phys Chem Chem Phys ; 22(46): 26652-26668, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33231596

RESUMO

After a general introduction to the features and mechanisms of cytochrome c oxidases (CcOs) in mitochondria and aerobic bacteria, we present DFT calculated physical and spectroscopic properties for the catalytic reaction cycle compared with experimental observations in bacterial ba3 type CcO, also with comparisons/contrasts to aa3 type CcOs. The Dinuclear Complex (DNC) is the active catalytic reaction center, containing a heme a3 Fe center and a near lying Cu center (called CuB) where by successive reduction and protonation, molecular O2 is transformed to two H2O molecules, and protons are pumped from an inner region across the membrane to an outer region by transit through the CcO integral membrane protein. Structures, energies and vibrational frequencies for Fe-O and O-O modes are calculated by DFT over the catalytic cycle. The calculated DFT frequencies in the DNC of CcO are compared with measured frequencies from Resonance Raman spectroscopy to clarify the composition, geometry, and electronic structures of different intermediates through the reaction cycle, and to trace reaction pathways. X-ray structures of the resting oxidized state are analyzed with reference to the known experimental reaction chemistry and using DFT calculated structures in fitting observed electron density maps. Our calculations lead to a new proposed reaction pathway for coupling the PR → F → OH (ferryl-oxo → ferric-hydroxo) pathway to proton pumping by a water shift mechanism. Through this arc of the catalytic cycle, major shifts in pKa's of the special tyrosine and a histidine near the upper water pool activate proton transfer. Additional mechanisms for proton pumping are explored, and the role of the CuB+ (cuprous state) in controlling access to the dinuclear reaction site is proposed.


Assuntos
Proteínas de Bactérias/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Elétrons , Prótons , Catálise , Domínio Catalítico , Teoria da Densidade Funcional , Transporte de Elétrons , Ferro/química , Modelos Químicos , Oxigênio/química , Thermus thermophilus/química
11.
Chemistry ; 25(10): 2538-2544, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30393899

RESUMO

The topology of the molecular electron density of benzene dithiol gold cluster complex Au4 -S-C6 H4 -S'-Au'4 changed when relativistic corrections were made and the structure was close to a minimum of the Born-Oppenheimer energy surface. Specifically, new bond paths between hydrogen atoms on the benzene ring and gold atoms appeared, indicating that there is a favorable interaction between these atoms at the relativistic level. This is consistent with the observation that gold becomes a better electron acceptor when relativistic corrections are applied. In addition to relativistic effects, here, we establish the sensitivity of molecular topology to basis sets and convergence thresholds for geometry optimization.

12.
Inorg Chem ; 58(20): 13933-13944, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31566371

RESUMO

Density functional vibrational frequency calculations have been performed on eight geometry optimized cytochrome c oxidase (CcO) dinuclear center (DNC) reaction cycle intermediates and on the oxymyoglobin (oxyMb) active site. The calculated Fe-O and O-O stretching modes and their frequency shifts along the reaction cycle have been compared with the available resonance Raman (rR) measurements. The calculations support the proposal that in state A[Fea33+-O2-•···CuB+] of CcO, O2 binds with Fea32+ in a similar bent end-on geometry to that in oxyMb. The calculations show that the observed 20 cm-1 shift of the Fea3-O stretching mode from the PR to F state is caused by the protonation of the OH- ligand on CuB2+ (PR[Fea34+═O2-···HO--CuB2+] → F[Fea34+═O2-···H2O-CuB2+]), and that the H2O ligand is still on the CuB2+ site in the rR identified F[Fea34+═O2-···H2O-CuB2+] state. Further, the observed rR band at 356 cm-1 between states PR and F is likely an O-Fea3-porphyrin bending mode. The observed 450 cm-1 low Fea3-O frequency mode for the OH active oxidized state has been reproduced by our calculations on a nearly symmetrically bridged Fea33+-OH-CuB2+ structure with a relatively long Fea3-O distance near 2 Å. Based on Badger's rule, the calculated Fea3-O distances correlate well with the calculated νFe-O-2/3 (νFe-O is the Fea3-O stretching frequency) with correlation coefficient R = 0.973.


Assuntos
Teoria da Densidade Funcional , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ferro/química , Oxigênio/química , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Complexo IV da Cadeia de Transporte de Elétrons/química , Ferro/metabolismo , Ligantes , Modelos Moleculares , Oxigênio/metabolismo , Vibração
13.
Inorg Chem ; 57(3): 1048-1059, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29308889

RESUMO

Broken-symmetry density functional calculations have been performed on the [Fea34+,CuB2+] state of the dinuclear center (DNC) for the PR → F part of the catalytic cycle of ba3 cytochrome c oxidase (CcO) from Thermus thermophilus (Tt), using the OLYP-D3-BJ functional. The calculations show that the movement of the H2O molecules in the DNC affects the pKa values of the residue side chains of Tyr237 and His376+, which are crucial for proton transfer/pumping in ba3 CcO from Tt. The calculated lowest energy structure of the DNC in the [Fea34+,CuB2+] state (state F) is of the form Fea34+═O2-···CuB2+, in which the H2O ligand that resulted from protonation of the OH- ligand in the PR state is dissociated from the CuB2+ site. The calculated Fea34+═O2- distance in F (1.68 Å) is 0.03 Å longer than that in PR (1.65 Å), which can explain the different Fea34+═O2- stretching modes in P (804 cm-1) and F (785 cm-1) identified by resonance Raman experiments. In this F state, the CuB2+···O2- (ferryl-oxygen) distance is only around 2.4 Å. Hence, the subsequent OH state [Fea33+-OH--CuB2+] with a µ-hydroxo bridge can be easily formed, as shown by our calculations.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Compostos Organometálicos/metabolismo , Bombas de Próton/metabolismo , Água/metabolismo , Biocatálise , Dimerização , Complexo IV da Cadeia de Transporte de Elétrons/química , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/química , Thermus thermophilus/enzimologia , Água/química
14.
Phys Chem Chem Phys ; 20(26): 17961-17976, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29926059

RESUMO

Interactions of N2O5 with water media are of great importance in atmospheric chemistry and have been the topic of extensive research for over two decades. Nevertheless, many physical and chemical properties of N2O5 at the surface or in bulk water are unknown or not microscopically understood. This study presents extensive new results on the physical properties of N2O5 in water and at the surface of water, with a focus on their microscopic basis. The main results are obtained using ab initio molecular dynamics and calculations of a potential of mean force. These include: (1) collisions of N2O5 with water at 300 K lead to trapping at the surface for at least 20 ps and with 95% probability. (2) During that time, there is no N2O5 hydrolysis, evaporation, or entry into the bulk. (3) Charge separation between the NO2 and NO3 groups of N2O5, fluctuates significantly with time. (4) Energy accommodation of the colliding N2O5 at the surface takes place within picoseconds. (5) The binding energy of N2O5 to a nanosize amorphous ice particle at 0 K is on the order of 15 kcal mol-1 for the main surface site. N2O5 binding to the cluster is due to one weak hydrogen bond and to interactions between partial charges on the N2O5 and on water. (6) The free-energy profile was calculated for transporting N2O5 from the gas phase through the interface and into bulk water. The corresponding concentration profile exhibits a propensity for N2O5 at the aqueous surface. The free energy barrier for entry from the surface into the bulk was determined to be 1.8 kcal mol-1. These findings are used to interpret recent experiments. We conclude with implications of this study for atmospheric chemistry.

15.
J Chem Phys ; 148(24): 241725, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960316

RESUMO

The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.

16.
Biochim Biophys Acta ; 1857(9): 1594-1606, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27317965

RESUMO

Cytochrome c oxidase (CcO) is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. While proton uptake channels as well as water exit channels have been identified for A-type CcOs, the means by which water and protons exit B-type CcOs remain unclear. In this work, we investigate potential mechanisms for proton transport above the dinuclear center (DNC) in ba3-type CcO of Thermus thermophilus. Using long-time scale, all-atom molecular dynamics (MD) simulations for several relevant protonation states, we identify a potential mechanism for proton transport that involves propionate A of the active site heme a3 and residues Asp372, His376 and Glu126(II), with residue His376 acting as the proton-loading site. The proposed proton transport process involves a rotation of residue His376 and is in line with experimental findings. We also demonstrate how the strength of the salt bridge between residues Arg225 and Asp287 depends on the protonation state and that this salt bridge is unlikely to act as a simple electrostatic gate that prevents proton backflow. We identify two water exit pathways that connect the water pool above the DNC to the outer P-side of the membrane, which can potentially also act as proton exit transport pathways. Importantly, these water exit pathways can be blocked by narrowing the entrance channel between residues Gln151(II) and Arg449/Arg450 or by obstructing the entrance through a conformational change of residue Tyr136, respectively, both of which seem to be affected by protonation of residue His376.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/química , Simulação de Dinâmica Molecular , Prótons , Água/química , Bombas de Próton
17.
J Am Chem Soc ; 139(20): 7082-7088, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28464604

RESUMO

Characterizing structural and phase transformations of water at the molecular level is key to understanding a variety of multiphase processes ranging from ice nucleation in the atmosphere to hydration of biomolecules and wetting of solid surfaces. In this study, state-of-the-art quantum simulations with a many-body water potential energy surface, which exhibits chemical and spectroscopic accuracy, are carried out to monitor the microscopic melting of the water hexamer through the analysis of vibrational spectra and appropriate structural order parameters as a function of temperature. The water hexamer is specifically chosen as a case study due to the central role of this cluster in the molecular-level understanding of hydrogen bonding in water. Besides being in agreement with the experimental data available for selected isomers at very low temperature, the present results provide quantitative insights into the interplay between energetic, entropic, and nuclear quantum effects on the evolution of water clusters from "solid-like" to "liquid-like" structures. This study thus demonstrates that computer simulations can now bridge the gap between measurements currently possible for individual isomers at very low temperature and observations of isomer mixtures at ambient conditions.

18.
J Comput Chem ; 38(18): 1631-1639, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28470855

RESUMO

Combined quantum mechanical molecular mechanics (QM/MM) calculations have become a popular methodology for efficient and accurate description of large molecular systems. In this work we introduce our development of a QM/MM framework based on two well-known codes-NWChem and AMBER. As an initial application area we are focused on excited state properties of small molecules in an aqueous phase using an analogue of the green fluorescent protein (GFP) chromophore as a particular test case. Our approach incorporates high level coupled cluster theory for the analysis of excited states providing a reliable theoretical analysis of effects of an aqueous solvation environment on the photochemical properties of the GFP chromophore. Using a systematic approach, which involves comparison of gas phase and aqueous phase results for different protonation states and conformations, we resolve existing uncertainties regarding the theoretical interpretation of experimental data. We observe that the impact of aqueous environment on charged states generally results in blue shifts of the absorption spectra, but the magnitude of the effect is sensitive to both protonation state and conformation and can be rationalized based on charge movement into the area of higher/lower external electrostatic potentials. At neutral pH levels the experimentally observed absorption signal is most likely coming from the phenol protonated form. Our results also show that the high level electron correlated method is essential for a proper description of excited states of GFP. © 2017 Wiley Periodicals, Inc.


Assuntos
Teoria da Densidade Funcional , Proteínas de Fluorescência Verde/química , Teoria Quântica , Soluções , Água/química
19.
J Comput Chem ; 38(4): 238-249, 2017 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-27910112

RESUMO

We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc.


Assuntos
Simulação por Computador , Modelos Moleculares , Algoritmos , Modelos Químicos , Relação Quantitativa Estrutura-Atividade
20.
J Comput Chem ; 38(2): 81-86, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27862042

RESUMO

The Quantum Theory of Atoms in Molecules (QTAIM) is used to elucidate the effects of relativity on chemical systems. To do this, molecules are studied using density-functional theory at both the nonrelativistic level and using the scalar relativistic zeroth-order regular approximation. Relativistic effects on the QTAIM properties and topology of the electron density can be significant for chemical systems with heavy atoms. It is important, therefore, to use the appropriate relativistic treatment of QTAIM (Anderson and Ayers, J. Phys. Chem. 2009, 115, 13001) when treating systems with heavy atoms. © 2016 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA