Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(14): e2215997120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36976766

RESUMO

The cell envelope of gram-negative bacteria constitutes the first protective barrier between a cell and its environment. During host infection, the bacterial envelope is subjected to several stresses, including those induced by reactive oxygen species (ROS) and reactive chlorine species (RCS) produced by immune cells. Among RCS, N-chlorotaurine (N-ChT), which results from the reaction between hypochlorous acid and taurine, is a powerful and less diffusible oxidant. Here, using a genetic approach, we demonstrate that Salmonella Typhimurium uses the CpxRA two-component system to detect N-ChT oxidative stress. Moreover, we show that periplasmic methionine sulfoxide reductase (MsrP) is part of the Cpx regulon. Our findings demonstrate that MsrP is required to cope with N-ChT stress by repairing N-ChT-oxidized proteins in the bacterial envelope. By characterizing the molecular signal that induces Cpx when S. Typhimurium is exposed to N-ChT, we show that N-ChT triggers Cpx in an NlpE-dependent manner. Thus, our work establishes a direct link between N-ChT oxidative stress and the envelope stress response.


Assuntos
Proteínas de Bactérias , Salmonella typhimurium , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Taurina/farmacologia , Ácido Hipocloroso/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
PLoS Genet ; 18(4): e1010188, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35486648

RESUMO

Type Four Pili (T4P) are extracellular appendages mediating several bacterial functions such as motility, biofilm formation and infection. The ability to adhere to substrates is essential for all these functions. In Myxococcus xanthus, during twitching motility, the binding of polar T4P to exopolysaccharides (EPS), induces pilus retraction and the forward cell movement. EPS are produced, secreted and weakly associated to the M. xanthus cell surface or deposited on the substrate. In this study, a genetic screen allowed us to identify two factors involved in EPS-independent T4P-dependent twitching motility: the PilY1.1 protein and the HsfBA phosphorelay. Transcriptomic analyses show that HsfBA differentially regulates the expression of PilY1 proteins and that the down-regulation of pilY1.1 together with the accumulation of its homologue pilY1.3, allows twitching motility in the absence of EPS. The genetic and bioinformatic dissection of the PilY1.1 domains shows that PilY1.1 might be a bi-functional protein with a role in priming T4P extension mediated by its conserved N-terminal domain and roles in EPS-dependent motility mediated by an N-terminal DUF4114 domain activated upon binding to Ca2+. We speculate that the differential transcriptional regulation of PilY1 homologs by HsfBA in response to unknown signals, might allow accessorizing T4P tips with different modules allowing twitching motility in the presence of alternative substrates and environmental conditions.


Assuntos
Proteínas de Fímbrias , Myxococcus xanthus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Movimento Celular/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Myxococcus xanthus/fisiologia
3.
Environ Microbiol ; 19(3): 1103-1119, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27902881

RESUMO

Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes.


Assuntos
Genoma Bacteriano , Magnetossomos , Proteobactérias/classificação , Proteobactérias/genética , Sequência de Bases , Deltaproteobacteria/genética , Evolução Molecular , Magnetossomos/genética , Filogenia , Proteobactérias/ultraestrutura
4.
Biotechnol Biofuels Bioprod ; 15(1): 127, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403068

RESUMO

BACKGROUND: Primary degraders of polysaccharides play a key role in anaerobic biotopes, where plant cell wall accumulates, providing extracellular enzymes to release fermentable carbohydrates to fuel themselves and other non-degrader species. Ruminiclostridium cellulolyticum is a model primary degrader growing amongst others on arabinoxylan. It produces large multi-enzymatic complexes called cellulosomes, which efficiently deconstruct arabinoxylan into fermentable monosaccharides. RESULTS: Complete extracellular arabinoxylan degradation was long thought to be required to fuel the bacterium during this plant cell wall deconstruction stage. We discovered and characterized a second system of "arabinoxylan" degradation in R. cellulolyticum, which challenged this paradigm. This "selfish" system is composed of an ABC transporter dedicated to the import of large and possibly acetylated arabinoxylodextrins, and a set of four glycoside hydrolases and two esterases. These enzymes show complementary action modes on arabinoxylo-dextrins. Two α-L-arabinofuranosidases target the diverse arabinosyl side chains, and two exo-xylanases target the xylo-oligosaccharides backbone either at the reducing or the non-reducing end. Together, with the help of two different esterases removing acetyl decorations, they achieve the depolymerization of arabinoxylo-dextrins in arabinose, xylose and xylobiose. The in vivo study showed that this new system is strongly beneficial for the fitness of the bacterium when grown on arabinoxylan, leading to the conclusion that a part of arabinoxylan degradation is achieved in the cytosol, even if monosaccharides are efficiently provided by the cellulosomes in the extracellular space. These results shed new light on the strategies used by anaerobic primary degrader bacteria to metabolize highly decorated arabinoxylan in competitive environments. CONCLUSION: The primary degrader model Ruminiclostridium cellulolyticum has developed a "selfish" strategy consisting of importing into the bacterium, large arabinoxylan-dextrin fractions released from a partial extracellular deconstruction of arabinoxylan, thus complementing its efficient extracellular arabinoxylan degradation system. Genetic studies suggest that this system is important to support fitness and survival in a competitive biotope. These results provide a better understanding of arabinoxylan catabolism in the primary degrader, with biotechnological application for synthetic microbial community engineering for the production of commodity chemicals from lignocellulosic biomass.

5.
mBio ; 12(6): e0220621, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34749527

RESUMO

Xyloglucan utilization by Ruminiclostridium cellulolyticum was formerly shown to imply the uptake of large xylogluco-oligosaccharides, followed by cytosolic depolymerization into glucose, galactose, xylose, and cellobiose. This raises the question of how the anaerobic bacterium manages the simultaneous presence of multiple sugars. Using genetic and biochemical approaches targeting the corresponding metabolic pathways, we observed that, surprisingly, all sugars are catabolized, collectively, but glucose consumption is prioritized. Most selected enzymes display unusual features, especially the GTP-dependent hexokinase of glycolysis, which appeared reversible and crucial for xyloglucan utilization. In contrast, mutant strains lacking either galactokinase, cellobiose-phosphorylase, or xylulokinase still catabolize xyloglucan but display variably altered growth. Furthermore, the xylogluco-oligosaccharide depolymerization process appeared connected to the downstream pathways through an intricate network of competitive and noncompetitive inhibitions. Altogether, our data indicate that xyloglucan utilization by R. cellulolyticum relies on an energy-saving central carbon metabolism deviating from current bacterial models, which efficiently prevents carbon overflow. IMPORTANCE The study of the decomposition of recalcitrant plant biomass is of great interest as the limiting step of terrestrial carbon cycle and to produce plant-derived valuable chemicals and energy. While extracellular cellulose degradation and catabolism have been studied in detail, few publications describe the complete metabolism of hemicelluloses and, to date, the published models are limited to the extracellular degradation and sequential entry of simple sugars. Here, we describe how the model anaerobic bacterium Ruminiclostridium cellulolyticum deals with the synchronous intracellular release of glucose, galactose, xylose, and cellobiose upon cytosolic depolymerization of imported xyloglucan oligosaccharides. The described novel metabolic strategy involves the simultaneous activity of different metabolic pathways coupled to a network of inhibitions controlling the carbon flux and is distinct from the ubiquitously observed sequential uptake and metabolism of carbohydrates known as the diauxic shift. Our results highlight the diversity of cellular responses related to a complex environment.


Assuntos
Firmicutes/metabolismo , Glucanos/metabolismo , Xilanos/metabolismo , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celobiose/metabolismo , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Redes e Vias Metabólicas , Polissacarídeos/metabolismo
6.
Nucleic Acids Res ; 36(Database issue): D986-90, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17940091

RESUMO

CATdb is a free resource available at http://urgv.evry.inra.fr/CATdb that provides public access to a large collection of transcriptome data for Arabidopsis thaliana produced by a single Complete Arabidopsis Transcriptome Micro Array (CATMA) platform. CATMA probes consist of gene-specific sequence tags (GSTs) of 150-500 bp. The v2 version of CATMA contains 24 576 GST probes representing most of the predicted A. thaliana genes, and 615 probes tiling the chloroplastic and mitochondrial genomes. Data in CATdb are entirely processed with the same standardized protocol, from microarray printing to data analyses. CATdb contains the results of 53 projects including 1724 hybridized samples distributed between 13 different organs, 49 different developmental conditions, 45 mutants and 63 environmental conditions. All the data contained in CATdb can be downloaded from the web site and subsets of data can be sorted out and displayed either by keywords, by experiments, genes or lists of genes up to 100. CATdb gives an easy access to the complete description of experiments with a picture of the experiment design.


Assuntos
Arabidopsis/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Arabidopsis/metabolismo , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Sondas de Oligonucleotídeos/química , RNA Mensageiro/análise , Sitios de Sequências Rotuladas , Interface Usuário-Computador
7.
PLoS Genet ; 3(6): e86, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17542647

RESUMO

TERMINAL FLOWER 2/LIKE HETEROCHROMATIN PROTEIN 1 (TFL2/LHP1) is the only Arabidopsis protein with overall sequence similarity to the HETEROCHROMATIN PROTEIN 1 (HP1) family of metazoans and S. pombe. TFL2/LHP1 represses transcription of numerous genes, including the flowering-time genes FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC), as well as the floral organ identity genes AGAMOUS (AG) and APETALA 3 (AP3). These genes are also regulated by proteins of the Polycomb repressive complex 2 (PRC2), and it has been proposed that TFL2/LHP1 represents a potential stabilizing factor of PRC2 activity. Here we show by chromatin immunoprecipitation and hybridization to an Arabidopsis Chromosome 4 tiling array (ChIP-chip) that TFL2/LHP1 associates with hundreds of small domains, almost all of which correspond to genes located within euchromatin. We investigated the chromatin marks to which TFL2/LHP1 binds and show that, in vitro, TFL2/LHP1 binds to histone H3 di- or tri-methylated at lysine 9 (H3K9me2 or H3K9me3), the marks recognized by HP1, and to histone H3 trimethylated at lysine 27 (H3K27me3), the mark deposited by PRC2. However, in vivo TFL2/LHP1 association with chromatin occurs almost exclusively and co-extensively with domains marked by H3K27me3, but not H3K9me2 or -3. Moreover, the distribution of H3K27me3 is unaffected in lhp1 mutant plants, indicating that unlike PRC2 components, TFL2/LHP1 is not involved in the deposition of this mark. Rather, our data suggest that TFL2/LHP1 recognizes specifically H3K27me3 in vivo as part of a mechanism that represses the expression of many genes targeted by PRC2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cromossômicas não Histona/metabolismo , Genes de Plantas/fisiologia , Histonas/metabolismo , Lisina/metabolismo , Arabidopsis/metabolismo , Eucromatina/genética , Eucromatina/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Histonas/genética , Lisina/genética , Metilação , Dados de Sequência Molecular , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
9.
Plant Methods ; 7: 8, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21447150

RESUMO

BACKGROUND: In the contexts of genomics, post-genomics and systems biology approaches, data integration presents a major concern. Databases provide crucial solutions: they store, organize and allow information to be queried, they enhance the visibility of newly produced data by comparing them with previously published results, and facilitate the exploration and development of both existing hypotheses and new ideas. RESULTS: The FLAGdb++ information system was developed with the aim of using whole plant genomes as physical references in order to gather and merge available genomic data from in silico or experimental approaches. Available through a JAVA application, original interfaces and tools assist the functional study of plant genes by considering them in their specific context: chromosome, gene family, orthology group, co-expression cluster and functional network. FLAGdb++ is mainly dedicated to the exploration of large gene groups in order to decipher functional connections, to highlight shared or specific structural or functional features, and to facilitate translational tasks between plant species (Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera). CONCLUSION: Combining original data with the output of experts and graphical displays that differ from classical plant genome browsers, FLAGdb++ presents a powerful complementary tool for exploring plant genomes and exploiting structural and functional resources, without the need for computer programming knowledge. First launched in 2002, a 15th version of FLAGdb++ is now available and comprises four model plant genomes and over eight million genomic features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA