Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Inorg Chem ; 62(44): 18025-18028, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37882445

RESUMO

The species originally reported as [Co(bipy)2O2BOH]·[B5O6(OH)4]·H3BO3·H3O·H2O, a Co(II) complex containing a chelated O2BOH2- ligand, is shown to be [Co(bipy)2O2CO]·[B5O6(OH)4]·H3BO3·2H2O, a Co(III) complex containing a chelated O2CO2- ligand. This was confirmed by 1H and 13C NMR, MS, IR, and an X-ray crystal structure.

2.
Langmuir ; 38(16): 4979-4995, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35417182

RESUMO

Historically, the irreversible reduction of aryldiazonium salts has provided a reliable method to modify surfaces, demonstrating a catalogue of suitable diazonium salts for targeted applications. This work expands the knowledge of diazonium salt chemistry to participate in surface electroinitiated emulsion polymerization (SEEP). The influence of concentration, electronic effects, and steric hindrance/regiochemistry of the diazonium salt initiator on the production of polymeric films is examined. The objective of this work is to determine if a polymer film can be tailored, controlling the thickness, density, and surface homogeneity using specific diazonium chemistry. The data presented herein demonstrate a significant difference in polymer films that can be achieved when selecting a variety of diazonium salts and vinylic monomers. A clear trend aligns with the electron-rich diazonium salt substitution providing the thickest films (up to 70.9 ± 17.8 nm) with increasing diazonium concentration and electron-withdrawing substitution achieving optimal homogeneity for the surface of the film at a 5 mM diazonium concentration.

3.
Chemistry ; 27(3): 877-887, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32659052

RESUMO

Organophosphates are a class of organic compounds that are important for living organisms, forming the building blocks for DNA, RNA, and some essential cofactors. Furthermore, non-natural organophosphates are widely used in industrial applications, including as pesticides; in laundry detergents; and, unfortunately, as chemical weapons agents. In some cases, the natural degradation of organophosphates can take thousands of years; this longevity creates problems associated with handling and the storage of waste generated by such phosphate esters, in particular. Efforts to develop new catalysts for the cleavage of phosphate esters have progressed in recent decades, mainly in the area of homogeneous catalysis. In contrast, the development of heterogeneous catalysts for the hydrolysis of organophosphates has not been as prominent. Herein, examples of heterogeneous systems are described and the importance of the development of heterogeneous catalysts applicable to organophosphate hydrolysis is highlighted, shedding light on recent advances related to different solid matrices that have been employed.

4.
Inorg Chem ; 60(17): 13071-13079, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34424671

RESUMO

The evidence for the existence of metal complexes containing H3O+ as a ligand in the solid state is examined. Each of the 68 examples in the Cambridge Structural Database in which H3O+ is bound to a transition metal, lanthanoid, actinoid, or main group metal ion is detailed and critically appraised. It is concluded that none of the reported examples of complexes containing coordinated H3O+ have been unequivocally characterized and that they result from either curation errors or misinterpretations of the crystallographic data. These conclusions are supported by computational techniques, which show that three purported H3O+ complexes based on the 1,4,7,10,13,16,21,24-octa-azabicyclo(8.8.8)hexacosane azacryptand skeleton are better described as aqua complexes, with protonation occurring at the amine ligand.

5.
Chembiochem ; 20(12): 1536-1540, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-30719821

RESUMO

Purple acid phosphatases (PAPs) are members of the large family of metallohydrolases, a group of enzymes that perform a wide range of biological functions, while employing a highly conserved catalytic mechanism. PAPs are found in plants, animals and fungi; in humans they play an important role in bone turnover and are thus of interest for developing treatments for osteoporosis. The majority of metallohydrolases use a metal-bound hydroxide to initiate catalysis, which leads to the formation of a proposed five-coordinate oxyphosphorane species in the transition state. In this work, we crystallized PAP from red kidney beans (rkbPAP) in the presence of both adenosine and vanadate. The in crystallo-formed vanadate analogue of ADP provides detailed insight into the binding mode of a PAP substrate, captured in a structure that mimics the putative fivecoordinate transition state. Our observations not only provide unprecedented insight into the mechanism of metallohydrolases, but might also guide the structure-based design of inhibitors for application in the treatment of several human illnesses.


Assuntos
Fosfatase Ácida/química , Proteínas de Plantas/química , Catálise , Domínio Catalítico , Cinética , Modelos Moleculares , Phaseolus/metabolismo , Vanadatos/química
6.
Biochemistry ; 56(26): 3328-3336, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28562023

RESUMO

Glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes is a binuclear metallohydrolase with a high affinity for metal ions at its α site but a lower affinity at its ß site in the absence of a substrate. Isothermal titration calorimetry (ITC) has been used to quantify the Co(II) and Mn(II) binding affinities and thermodynamics of the two sites in wild-type GpdQ and two mutants, both in the absence and in the presence of phosphate. Metal ions bind to the six-coordinate α site in an entropically driven process with loss of a proton, while binding at the ß site is not detected by ITC. Phosphate enhances the metal affinity of the α site by increasing the binding entropy and the metal affinity of the ß site by enthalpic (Co) or entropic (Mn) contributions, but no additional loss of protons. Mutations of first- and second-coordination sphere residues at the ß site increase the metal affinity of both sites by enhancing the binding enthalpy. In particular, loss of the hydrogen bond from second-sphere Ser127 to the metal-coordinating Asn80 has a significant effect on the metal binding thermodynamics that result in a resting binuclear active site with high catalytic activity. While structural and spectroscopic data with excess metal ions have indicated a bridging hydroxide in the binuclear GpdQ site, analysis of ITC data here reveals the loss of a single proton in the assembly of this site, indicating that the metal-bound hydroxide nucleophile is formed in the resting inactive mononuclear form, which becomes catalytically competent upon binding the second metal ion.


Assuntos
Proteínas de Bactérias/metabolismo , Cobalto/metabolismo , Enterobacter aerogenes/enzimologia , Manganês/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Substituição de Aminoácidos , Asparagina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Calorimetria , Domínio Catalítico , Ativação Enzimática , Ligação de Hidrogênio , Cinética , Mutação , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Fósforo/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Serina/química , Termodinâmica , Titulometria
7.
Chemistry ; 23(50): 12264-12274, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28339125

RESUMO

Dinuclear CuII -patellamide complexes (patellamides are naturally occurring cyclic pseudo-octapeptides) are known to be efficient catalysts for hydrolysis reactions of biological importance, for example, those of phosphatase, carbonic anhydrase, and glycosidase. However, the biological role of patellamides is still unknown. Patellamides were originally extracted from the sea squirt Lissoclinum patella, but are now known to be ribosomally expressed by the blue-green algae Prochloron that live in symbiosis with L. patella. In a further step to unravel the metabolic significance of the patellamide complexes, the question as to whether these are also formed inside Prochloron cells is addressed. In this study, a biocompatible patellamide-fluorescent dye conjugate has been introduced into living Prochloron cells and, by means of flow cytometry and confocal microscopy, it is shown that CuII ions are coordinated to patellamides in vivo.

8.
Chemistry ; 23(20): 4778-4781, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28261912

RESUMO

Metallohydrolases are a vast family of enzymes that play crucial roles in numerous metabolic pathways. Several members have emerged as targets for chemotherapeutics. Knowledge about their reaction mechanisms and associated transition states greatly aids the design of potent and highly specific drug leads. By using a high-resolution crystal structure, we have probed the trajectory of the reaction catalyzed by purple acid phosphatase, an enzyme essential for the integrity of bone structure. In particular, the transition state is visualized, thus providing detailed structural information that may be exploited in the design of specific inhibitors for the development of new anti-osteoporotic chemotherapeutics.


Assuntos
Fosfatase Ácida/metabolismo , Glicoproteínas/metabolismo , Fosfatase Ácida/química , Animais , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Glicoproteínas/química , Hidrólise , Suínos
9.
Chemistry ; 22(3): 999-1009, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26662456

RESUMO

The diesterase Rv0805 from Mycobacterium tuberculosis is a dinuclear metallohydrolase that plays an important role in signal transduction by controlling the intracellular levels of cyclic nucleotides. As Rv0805 is essential for mycobacterial growth it is a promising new target for the development of chemotherapeutics to treat tuberculosis. The in vivo metal-ion composition of Rv0805 is subject to debate. Here, we demonstrate that the active site accommodates two divalent transition metal ions with binding affinities ranging from approximately 50 nm for Mn(II) to about 600 nm for Zn(II) . In contrast, the enzyme GpdQ from Enterobacter aerogenes, despite having a coordination sphere identical to that of Rv0805, binds only one metal ion in the absence of substrate, thus demonstrating the significance of the outer sphere to modulate metal-ion binding and enzymatic reactivity. Ca(II) also binds tightly to Rv0805 (Kd ≈40 nm), but kinetic, calorimetric, and spectroscopic data indicate that two Ca(II) ions bind at a site different from the dinuclear transition-metal-ion binding site. Ca(II) acts as an activator of the enzymatic activity but is able to promote the hydrolysis of substrates even in the absence of transition-metal ions, thus providing an effective strategy for the regulation of the enzymatic activity.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cálcio/química , Íons/química , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Elementos de Transição/química , Sítios de Ligação , Ligação Proteica
10.
Chemistry ; 21(50): 18269-79, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26577705

RESUMO

Complexation studies of the dinucleating ligand H3 L (H3 L=2-{[bis(pyridin-2-ylmethyl)amino]methyl}-6-{[bis(6-pivaloylamidopyridin-2-ylmethyl)amino]methyl}-4-methylphenol), with metal-binding sites A and B, which both provide four donors to a metal ion; a tertiary amine; two pyridines (substituted with amide hydrogen-bond donors in site B), and a bridging phenolate, with Zn(II) , Cu(II) , and Ga(III) are reported. The titration of H3 L with the three metal ions in solution was monitored by NMR spectroscopy or EPR and UV/Vis/near-IR spectroscopy, as well as by ESI-MS to analyze the selectivity of the two metal-ion sites A and B of this model ligand for metallophosphatases; the spectroscopic assignments are supported by X-ray crystallography results. The first Zn(II) ion coordinates to site A with unsubstituted pyridine donors and, upon addition of a second equivalent of Zn(II) , this coordinates to the sterically less accessible site B. From a similar titration with Ga(III) , it emerges that only a mononuclear complex is obtained, with the Ga(III) center coordinated to site A. When one equivalent of Ga(III) is reacted with the mononuclear Zn(II) complex, Zn(II) is forced by Ga(III) to exchange the site; this results in a dinuclear complex with Ga(III) in site A and Zn(II) in site B. With Cu(II) , two isomers are observed: one with and the other without a bridging phenolate; these differ significantly in their spectroscopic and magnetic properties.

11.
Arch Biochem Biophys ; 573: 59-68, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25797441

RESUMO

Many organophosphates (OPs) are used as pesticides in agriculture. They pose a severe health hazard due to their inhibitory effect on acetylcholinesterase. Therefore, detoxification of water and soil contaminated by OPs is important. Metalloenzymes such as methyl parathion hydrolase (MPH) from Pseudomonas sp. WBC-3 hold great promise as bioremediators as they are able to hydrolyze a wide range of OPs. MPH is highly efficient towards methyl parathion (1 × 10(6) s(-1) M(-1)), but its activity towards other OPs is more modest. Thus, site saturation mutagenesis (SSM) and DNA shuffling were performed to find mutants with improved activities on ethyl paraxon (6.1 × 10(3) s(-1) M(-1)). SSM was performed on nine residues lining the active site. Several mutants with modest activity enhancement towards ethyl paraoxon were isolated and used as templates for DNA shuffling. Ultimately, 14 multiple-site mutants with enhanced activity were isolated. One mutant, R2F3, exhibited a nearly 100-fold increase in the kcat/Km value for ethyl paraoxon (5.9 × 10(5) s(-1) M(-1)). These studies highlight the 'plasticity' of the MPH active site that facilitates the fine-tuning of its active site towards specific substrates with only minor changes required. MPH is thus an ideal candidate for the development of an enzyme-based bioremediation system.


Assuntos
Organofosfatos/química , Praguicidas/química , Monoéster Fosfórico Hidrolases/química , Clorpirifos/análogos & derivados , Clorpirifos/química , Embaralhamento de DNA , Evolução Molecular Direcionada , Hidrólise , Cinética , Metil Paration/química , Modelos Moleculares , Mutação , Paraoxon/análogos & derivados , Paraoxon/química , Paration/química , Monoéster Fosfórico Hidrolases/genética , Relação Estrutura-Atividade , Especificidade por Substrato
12.
Inorg Chem ; 54(15): 7249-63, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26196255

RESUMO

The active site of mammalian purple acid phosphatases (PAPs) have a dinuclear iron site in two accessible oxidation states (Fe(III)2 and Fe(III)Fe(II)), and the heterovalent is the active form, involved in the regulation of phosphate and phosphorylated metabolite levels in a wide range of organisms. Therefore, two sites with different coordination geometries to stabilize the heterovalent active form and, in addition, with hydrogen bond donors to enable the fixation of the substrate and release of the product, are believed to be required for catalytically competent model systems. Two ligands and their dinuclear iron complexes have been studied in detail. The solid-state structures and properties, studied by X-ray crystallography, magnetism, and Mössbauer spectroscopy, and the solution structural and electronic properties, investigated by mass spectrometry, electronic, nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and Mössbauer spectroscopies and electrochemistry, are discussed in detail in order to understand the structures and relative stabilities in solution. In particular, with one of the ligands, a heterovalent Fe(III)Fe(II) species has been produced by chemical oxidation of the Fe(II)2 precursor. The phosphatase reactivities of the complexes, in particular, also of the heterovalent complex, are reported. These studies include pH-dependent as well as substrate concentration dependent studies, leading to pH profiles, catalytic efficiencies and turnover numbers, and indicate that the heterovalent diiron complex discussed here is an accurate PAP model system.


Assuntos
Fosfatase Ácida/química , Fosfatase Ácida/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Biocatálise , Domínio Catalítico , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Modelos Moleculares , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo
13.
Biochim Biophys Acta ; 1834(1): 425-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22366468

RESUMO

The glycerophosphodiesterase from Enterobacter aerogenes (GpdQ) is a highly promiscuous dinuclear metallohydrolase with respect to both substrate specificity and metal ion composition. While this promiscuity may adversely affect the enzyme's catalytic efficiency its ability to hydrolyse some organophosphates (OPs) and by-products of OP degradation have turned GpdQ into a promising candidate for bioremedial applications. Here, we investigated both metal ion binding and the effect of the metal ion composition on catalysis. The prevalent in vivo metal ion composition for GpdQ is proposed to be of the type Fe(II)Zn(II), a reflection of natural abundance rather than catalytic optimisation. The Fe(II) appears to have lower binding affinity than other divalent metal ions, and the catalytic efficiency of this mixed metal center is considerably smaller than that of Mn(II), Co(II) or Cd(II)-containing derivatives of GpdQ. Interestingly, metal ion replacements do not only affect catalytic efficiency but also the optimal pH range for the reaction, suggesting that different metal ion combinations may employ different mechanistic strategies. These metal ion-triggered modulations are likely to be mediated via an extensive hydrogen bond network that links the two metal ion binding sites via residues in the substrate binding pocket. The observed functional diversity may be the cause for the modest catalytic efficiency of wild-type GpdQ but may also be essential to enable the enzyme to evolve rapidly to alter substrate specificity and enhance k(cat) values, as has recently been demonstrated in a directed evolution experiment. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.


Assuntos
Proteínas de Bactérias/química , Enterobacter aerogenes/enzimologia , Metais Pesados/química , Organofosfatos/química , Diester Fosfórico Hidrolases/química , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Catálise , Domínio Catalítico , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Metais Pesados/metabolismo , Organofosfatos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica
14.
J Biol Inorg Chem ; 19(8): 1263-75, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25104333

RESUMO

Metal ion-dependent, organophosphate-degrading enzymes have acquired increasing attention due to their ability to degrade and thus detoxify commonly used pesticides and nerve agents such as sarin. The best characterized of these enzymes are from Pseudomonas diminuta (OPH) and Agrobacterium radiobacter (OpdA). Despite high sequence homology (>90 % identity) and conserved metal ion coordination these enzymes display considerable variations in substrate specificity, metal ion affinity/preference and reaction mechanism. In this study, we highlight the significance of the presence (OpdA) or absence (OPH) of an extended hydrogen bond network in the active site of these enzymes for the modulation of their catalytic properties. In particular, the second coordination sphere residue in position 254 (Arg in OpdA, His in OPH) is identified as a crucial factor in modulating the substrate preference and binding of these enzymes. Inhibition studies with fluoride also support a mechanism for OpdA whereby the identity of the hydrolysis-initiating nucleophile changes as the pH is altered. The same is not observed for OPH.


Assuntos
Agrobacterium tumefaciens/enzimologia , Inibidores Enzimáticos/farmacologia , Fluoretos/farmacologia , Organofosfatos/farmacologia , Hidrolases de Triester Fosfórico/antagonistas & inibidores , Pseudomonas/enzimologia , Agrobacterium tumefaciens/isolamento & purificação , Calorimetria , Inibidores Enzimáticos/química , Fluoretos/química , Concentração de Íons de Hidrogênio , Cinética , Organofosfatos/química , Hidrolases de Triester Fosfórico/metabolismo , Pseudomonas/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica
15.
J Biol Inorg Chem ; 19(3): 389-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24414447

RESUMO

Binuclear metallohydrolases are a large and diverse family of enzymes that are involved in numerous metabolic functions. An increasing number of members find applications as drug targets or in processes such as bioremediation. It is thus essential to have an assay available that allows the rapid and reliable determination of relevant catalytic parameters (k cat, K m, and k cat/K m). Continuous spectroscopic assays are frequently only possible by using synthetic (i.e., nonbiological) substrates that possess a suitable chromophoric marker (e.g., nitrophenol). Isothermal titration calorimetry, in contrast, affords a rapid assay independent of the chromophoric properties of the substrate-the heat associated with the hydrolytic reaction can be directly related to catalytic properties. Here, we demonstrate the efficiency of the method on several selected examples of this family of enzymes and show that, in general, the catalytic parameters obtained by isothermal titration calorimetry are in good agreement with those obtained from spectroscopic assays.


Assuntos
Calorimetria/métodos , Hidrolases/metabolismo , Metaloproteases/metabolismo , Catálise , Condutometria/métodos , Hidrolases/química , Metaloproteases/química , Paraoxon/análise , Paraoxon/química , Paraoxon/metabolismo
16.
Inorg Chem ; 53(17): 9036-51, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25119813

RESUMO

It is becoming increasingly apparent that the secondary coordination sphere can have a crucial role in determining the functional properties of biomimetic metal complexes. We have therefore designed and prepared a variety of ligands as metallo-hydrolase mimics, where hydrogen bonding in the second coordination sphere is able to influence the structure of the primary coordination sphere and the substrate binding. The assessment of a structure-function relationship is based on derivates of 2,6-bis{[bis(pyridin-2-ylmethyl)amino]methyl}-4-methylphenol (HBPMP = HL(1)) and 2-{[bis(pyridin-2-ylmethyl)amino]methyl}-6-{[(2-hydroxybenzyl)(pyridin-2-ylmethyl)amino]methyl}-4-methylphenol (H2BPBPMP = H2L(5)), well-known phenolate-based ligands for metallo-hydrolase mimics. The model systems provide similar primary coordination spheres but site-specific modifications in the secondary coordination sphere. Pivaloylamide and amine moieties were chosen to mimic the secondary coordination sphere of the phosphatase models, and the four new ligands H3L(2), H3L(3), HL(4), and H4L(6) vary in the type and geometric position of the H-bond donors and acceptors, responsible for the positioning of the substrate and release of the product molecules. Five dinuclear Zn(II) complexes were prepared and structurally characterized in the solid, and four also in solution. The investigation of the phosphatase activity of four model complexes illustrates the impact of the H-bonding network: the Michaelis-Menten constants (catalyst-substrate binding) for all complexes that support hydrogen bonding are smaller than for the reference complex, and this generally leads to higher catalytic efficiency and higher turnover numbers.


Assuntos
Ligação de Hidrogênio , Modelos Teóricos , Monoéster Fosfórico Hidrolases/metabolismo , Zinco/química , Monoéster Fosfórico Hidrolases/química , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
17.
Acc Chem Res ; 45(9): 1593-603, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22698580

RESUMO

Binuclear metallohydrolases are a large family of enzymes that require two closely spaced transition metal ions to carry out a plethora of hydrolytic reactions. Representatives include purple acid phosphatases (PAPs), enzymes that play a role in bone metabolism and are the only member of this family with a heterovalent binuclear center in the active form (Fe(3+)-M(2+), M = Fe, Zn, Mn). Other members of this family are urease, which contains a di-Ni(2+) center and catalyzes the breakdown of urea, arginase, which contains a di-Mn(2+) center and catalyzes the final step in the urea cycle, and the metallo-ß-lactamases, which contain a di-Zn(2+) center and are virulence factors contributing to the spread of antibiotic-resistant pathogens. Binuclear metallohydrolases catalyze numerous vital reactions and are potential targets of drugs against a wide variety of human disorders including osteoporosis, various cancers, antibiotic resistance, and erectile dysfunctions. These enzymes also tend to catalyze more than one reaction. An example is an organophosphate (OP)-degrading enzyme from Enterobacter aerogenes (GpdQ). Although GpdQ is part of a pathway that is used by bacteria to degrade glycerolphosphoesters, it hydrolyzes a variety of other phosphodiesters and displays low levels of activity against phosphomono- and triesters. Such a promiscuous nature may have assisted the apparent recent evolution of some binuclear metallohydrolases to deal with situations created by human intervention such as OP pesticides in the environment. OP pesticides were first used approximately 70 years ago, and therefore the enzymes that bacteria use to degrade them must have evolved very quickly on the evolutionary time scale. The promiscuous nature of enzymes such as GpdQ makes them ideal candidates for the application of directed evolution to produce new enzymes that can be used in bioremediation and against chemical warfare. In this Account, we review the mechanisms employed by binuclear metallohydrolases and use PAP, the OP-degrading enzyme from Agrobacterium radiobacter (OPDA), and GpdQ as representative systems because they illustrate both the diversity and similarity of the reactions catalyzed by this family of enzymes. The majority of binuclear metallohydrolases utilize metal ion-activated water molecules as nucleophiles to initiate hydrolysis, while some, such as alkaline phosphatase, employ an intrinsic polar amino acid. Here we only focus on catalytic strategies applied by the former group.


Assuntos
Hidrolases/química , Metaloproteínas/química , Hidrolases/metabolismo , Metaloproteínas/metabolismo , Modelos Moleculares , Estrutura Molecular
18.
Inorg Chem ; 52(4): 2029-43, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23374019

RESUMO

A series of dinuclear cobalt(II) complexes has been prepared and characterized to generate functional and spectroscopic models for cobalt(II) substituted phosphoesterase enzymes such as the potential bioremediator GpdQ. Reaction of ligands based on 2,2'-(((2-hydroxy-5-methyl-1,3-phenylene)bis(methylene))bis((pyridin-2-ylmethyl)azanediyl)))diethanol (L1) and 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (L2) with cobalt(II) salts afforded [Co(2)(CO(2)EtH(2)L1)(CH(3)COO)(2)](PF(6)), [Co(2)(CO(2)EtL2)(CH(3)COO)(2)](PF(6)), [Co(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Co(2)(BrL2)(CH(3)COO)(2)](PF(6)), and [Co(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)). Complexes of the L2 ligands contain a coordinated methyl-ether, whereas the L1 ligand contains a coordinated alcohol. The complexes were characterized using mass spectrometry, microanalysis, X-ray crystallography, UV-vis-NIR diffuse reflectance spectroscopy, IR absorption spectroscopy, solid state magnetic susceptibility measurements, and variable-temperature variable-field magnetic circular dichroism (VTVH MCD) spectroscopy. Susceptibility studies show that [Co(2)(CO(2)EtH(2)L1)(CH(3)COO)(2)](PF(6)), [Co(2)(CO(2)EtL2)(CH(3)COO)(2)](PF(6)), and [Co(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) are weakly antiferromagnetically coupled, whereas [Co(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Co(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)) are weakly ferromagnetically coupled. The susceptibility results are confirmed by the VTVH MCD studies. Density functional theory calculations revealed that magnetic exchange coupling occurs mainly through the phenolic oxygen bridge. Implications of geometry and ligand design on the magnetic exchange coupling will be discussed. Functional studies of the complexes with the substrate bis(2,4-dinitrophenyl) phosphate showed them to be active towards hydrolysis of phosphoester substrates.


Assuntos
Cobalto/metabolismo , Compostos Organometálicos/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Cobalto/química , Cristalografia por Raios X , Enterobacter aerogenes/enzimologia , Ativação Enzimática , Campos Magnéticos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Diester Fosfórico Hidrolases/química
19.
J Inorg Biochem ; 238: 112061, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36371912

RESUMO

Biomimetics hold potential for varied applications in biotechnology and medicine but have also attracted particular interest as benchmarks for the functional study of their more complex biological counterparts, e.g. metalloenzymes. While many of the synthetic systems adequately mimic some structural and functional aspects of their biological counterparts the catalytic efficiencies displayed are mostly far inferior due to the smaller size and the associated lower complexity. Nonetheless they play an important role in bioinorganic chemistry. Numerous examples of biologically inspired and informed artificial catalysts have been reported, designed to mimic a plethora of chemical transformations, and relevant examples are highlighted in reviews and scientific reports. Herein, we discuss biomimetics of the metallohydrolase purple acid phosphatase (PAP), examples of which have been used to showcase synergistic research advances for both the biological and synthetic systems. In particular, we focus on the seminal contribution of our colleague Prof. Ademir Neves, and his group, pioneers in the design and optimization of suitable ligands that mimic the active site of PAP.


Assuntos
Fosfatase Ácida , Biomimética , Fosfatase Ácida/química , Catálise , Domínio Catalítico
20.
J Inorg Biochem ; 239: 112064, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36410306

RESUMO

We report the synthesis of a new asymmetric heptadentate ligand based on the 1,3-diaminopropan-2-ol backbone. The ligand 3-[[3-(bis-pyridin-2-ylmethyl-amino)-2-hydroxy-propyl]-(2-carbamoyl-ethyl)-amino]-propionamide (HL1) contains two amide and two pyridine groups attached to the 1,3-diaminopropan-2-ol core. Reaction between HL1 and Zn(ClO4)2.6H2O resulted in the formation of the dinuclear [Zn2(L1)(µ-OAc)](ClO4)2 complex, characterized by single crystal X-ray diffraction, 1H, 13C and 15N NMR, ESI-(+)-MS, CHN elemental analysis as well as infrared spectroscopy. The phosphatase activity of the complex was studied in the pH range 6-11 employing pyridinium bis(2,4-dinitrophenyl)phosphate (py(BDNPP)) as substrate. The complex exhibited activity dependent on the pH, presenting an asymmetric bell shape profile with the highest activity at pH 9; at high pH ligand exchange is rate-limiting. The hydrolysis of BDNPP- at pH 9 displayed behavior characteristic of Michaelis-Menten kinetics, with kcat = 5.06 × 10-3 min-1 and Km = 5.7 ± 1.0 mM. DFT calculations map out plausible reaction pathways and identify a terminal, Zn(II)-bound hydroxide as likely nucleophile.


Assuntos
Monoéster Fosfórico Hidrolases , Zinco , Zinco/química , Ligantes , Hidrólise , Cinética , Monoéster Fosfórico Hidrolases/química , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA