Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(6): 156, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819495

RESUMO

KEY MESSAGE: In current study candidate gene (261 genes) based association mapping on 144 pigeonpea accessions for flowering time and related traits and 29 MTAs producing eight superior haplotypes were identified. In the current study, we have conducted an association analysis for flowering-associated traits in a diverse pigeonpea mini-core collection comprising 144 accessions using the SNP data of 261 flowering-related genes. In total, 13,449 SNPs were detected in the current study, which ranged from 743 (ICP10228) to 1469 (ICP6668) among the individuals. The nucleotide diversity (0.28) and Watterson estimates (0.34) reflected substantial diversity, while Tajima's D (-0.70) indicated the abundance of rare alleles in the collection. A total of 29 marker trait associations (MTAs) were identified, among which 19 were unique to days to first flowering (DOF) and/or days to fifty percent flowering (DFF), 9 to plant height (PH), and 1 to determinate (Det) growth habit using 3 years of phenotypic data. Among these MTAs, six were common to DOF and/or DFF, and four were common to DOF/DFF along with the PH, reflecting their pleiotropic action. These 29 MTAs spanned 25 genes, among which 10 genes clustered in the protein-protein network analysis, indicating their concerted involvement in floral induction. Furthermore, we identified eight haplotypes, four of which regulate late flowering, while the remaining four regulate early flowering using the MTAs. Interestingly, haplotypes conferring late flowering (H001, H002, and H008) were found to be taller, while those involved in early flowering (H003) were shorter in height. The expression pattern of these genes, as inferred from the transcriptome data, also underpinned their involvement in floral induction. The haplotypes identified will be highly useful to the pigeonpea breeding community for haplotype-based breeding.


Assuntos
Cajanus , Flores , Haplótipos , Polimorfismo de Nucleotídeo Único , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Haplótipos/genética , Cajanus/genética , Cajanus/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Genes de Plantas/genética , Fenótipo , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Locos de Características Quantitativas/genética
2.
Physiol Mol Biol Plants ; 30(3): 497-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633271

RESUMO

Ziziphus nummularia an elite heat-stress tolerant shrub, grows in arid regions of desert. However, its molecular mechanism responsible for heat stress tolerance is unexplored. Therefore, we analysed whole transcriptome of Jaisalmer (heat tolerant) and Godhra (heat sensitive) genotypes of Z. nummularia to understand its molecular mechanism responsible for heat stress tolerance. De novo assembly of 16,22,25,052 clean reads yielded 276,029 transcripts. A total of 208,506 unigenes were identified which contains 4290 and 1043 differentially expressed genes (DEG) in TGO (treated Godhra at 42 °C) vs. CGO (control Godhra) and TJR (treated Jaisalmer at 42 °C) vs. CJR (control Jaisalmer), respectively. A total of 987 (67 highly enriched) and 754 (34 highly enriched) pathways were obsorved in CGO vs. TGO and CJR vs. TJR, respectively. Antioxidant pathways and TFs like Homeobox, HBP, ARR, PHD, GRAS, CPP, and E2FA were uniquely observed in Godhra genotype and SET domains were uniquely observed in Jaisalmer genotype. Further transposable elements were highly up-regulated in Godhra genotype but no activation in Jaisalmer genotype. A total of 43,093 and 39,278 simple sequence repeats were identified in the Godhra and Jaisalmer genotypes, respectively. A total of 10 DEGs linked to heat stress were validated in both genotypes for their expression under different heat stresses using quantitative real-time PCR. Comparing expression patterns of the selected DEGs identified ClpB1 as a potential candidate gene for heat tolerance in Z. nummularia. Here we present first characterized transcriptome of Z. nummularia in response to heat stress for the identification and characterization of heat stress-responsive genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01431-y.

3.
BMC Genomics ; 24(1): 526, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674140

RESUMO

To combat drought stress in rice, a major threat to global food security, three major quantitative trait loci for 'yield under drought stress' (qDTYs) were successfully exploited in the last decade. However, their molecular basis still remains unknown. To understand the role of secondary regulation by miRNA in drought stress response and their relation, if any, with the three qDTYs, the miRNA dynamics under drought stress was studied at booting stage in two drought tolerant (Sahbaghi Dhan and Vandana) and one drought sensitive (IR 20) cultivars. In total, 53 known and 40 novel differentially expressed (DE) miRNAs were identified. The primary drought responsive miRNAs were Osa-MIR2919, Osa-MIR3979, Osa-MIR159f, Osa-MIR156k, Osa-MIR528, Osa-MIR530, Osa-MIR2091, Osa-MIR531a, Osa-MIR531b as well as three novel ones. Sixty-one target genes that corresponded to 11 known and 4 novel DE miRNAs were found to be co-localized with the three qDTYs, out of the 1746 target genes identified. We could validate miRNA-mRNA expression under drought for nine known and three novel miRNAs in eight different rice genotypes showing varying degree of tolerance. From our study, Osa-MIR2919, Osa-MIR3979, Osa-MIR528, Osa-MIR2091-5p and Chr01_11911S14Astr and their target genes LOC_Os01g72000, LOC_Os01g66890, LOC_Os01g57990, LOC_Os01g56780, LOC_Os01g72834, LOC_Os01g61880 and LOC_Os01g72780 were identified as the most promising candidates for drought tolerance at booting stage. Of these, Osa-MIR2919 with 19 target genes in the qDTYs is being reported for the first time. It acts as a negative regulator of drought stress tolerance by modulating the cytokinin and brassinosteroid signalling pathway.


Assuntos
MicroRNAs , Oryza , Secas , Oryza/genética , Locos de Características Quantitativas , Resistência à Seca , MicroRNAs/genética
4.
Mol Biol Rep ; 50(6): 5509-5517, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37119417

RESUMO

BACKGROUND: Crop improvement for tolerance to various biotic and abiotic stress factors necessitates understanding the key gene regulatory mechanisms. One such mechanism of gene regulation involves changes in cytosine methylation at the gene body and flanking regulatory sequences. The present study was undertaken to identify genes which might be potential targets of drought-induced DNA methylation in chickpea. METHODS AND RESULTS: Two chickpea genotypes, which contrast for drought tolerance, were subjected to drought stress conditions and their differential response was studied by analysing different morpho-physiological traits. Utilizing the in-house, high throughput sequencing data, the SQUAMOSA promoter-binding (SBP) protein-like (SPL) transcription factor genes were identified to be differentially methylated and expressed amongst the two genotypes, in response to drought stress. The methylation status of one of these genes was examined and validated through bisulfite PCR (BS-PCR). The identified genes could be possible homologs to known epialleles and can therefore serve as potential epialleles which can be utilized for crop improvement in chickpea. CONCLUSION: The SPL TF genes are potential targets of epigenetic regulation in response to drought stress in chickpea. Since these are TFs, they might play important roles in controlling the expression of other genes, thus contributing to differential drought response of the two genotypes.


Assuntos
Cicer , Cicer/genética , Cicer/metabolismo , Secas , Epigênese Genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas/genética
5.
J Nematol ; 55(1): 20230031, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38026554

RESUMO

Anguina tritici is the first plant-parasitic nematode described in literature, dating back to the year 1743. It is responsible for causing earcockle (seed gall) and tundu diseases in wheat and rye. Notably, this nematode has been observed to survive in an anhydrobiotic state for up to 32 years within wheat seed galls. These exceptional characteristics have inspired the sequencing of the A. tritici genome. In this study, we present the initial draft genome of A. tritici, obtained using the Illumina MiSeq platform with coverage of 60-fold. The genome is estimated to have a size of 164 Mb and comprises 39,965 protein-coding genes, exhibiting a GC content of 39.1%. The availability of this genome data will serve as a foundation for future functional biological investigations, particularly for genes whose functions remain unknown to this day.

6.
BMC Plant Biol ; 22(1): 99, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247970

RESUMO

BACKGROUND: Alkaline soils cause low productivity in crop plants including lentil. Alkalinity adaptation strategies in lentil were revealed when morpho-anatomical and physio-biochemical observations were correlated with transcriptomics analysis in tolerant (PDL-1) and sensitive (L-4076) cultivars at seedling stage. RESULTS: PDL-1 had lesser salt injury and performed better as compared to L-4076. Latter showed severe wilting symptoms and higher accumulation of Na+ and lower K+ in roots and shoots. PDL-1 performed better under high alkalinity stress which can be attributed to its higher mitotic index, more accumulation of K+ in roots and shoots and less aberrantly dividing cells. Also, antioxidant enzyme activities, osmolytes' accumulation, relative water content, membrane stability index and abscisic acid were higher in this cultivar. Differentially expressed genes (DEGs) related to these parameters were upregulated in tolerant genotypes compared to the sensitive one. Significantly up-regulated DEGs were found to be involved in abscisic acid (ABA) signalling and secondary metabolites synthesis. ABA responsive genes viz. dehydrin 1, 9-cis-epoxycarotenoid dioxygenase, ABA-responsive protein 18 and BEL1-like homeodomain protein 1 had log2fold change above 4.0. A total of 12,836 simple sequence repeats and 4,438 single nucleotide polymorphisms were identified which can be utilized in molecular studies. CONCLUSIONS: Phyto-hormones biosynthesis-predominantly through ABA signalling, and secondary metabolism are the most potent pathways for alkalinity stress tolerance in lentil. Cultivar PDL-1 exhibited high tolerance towards alkalinity stress and can be used in breeding programmes for improving lentil production under alkalinity stress conditions.


Assuntos
Ácido Abscísico/metabolismo , Lens (Planta)/citologia , Lens (Planta)/genética , Lens (Planta)/metabolismo , Estresse Salino/genética , Tolerância ao Sal/genética , Análise de Sequência de RNA , Produtos Agrícolas/citologia , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Redes e Vias Metabólicas , Raízes de Plantas/metabolismo
7.
Crit Rev Food Sci Nutr ; 62(2): 443-465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33012173

RESUMO

Galactomannans are neutral hemicellulose biopolymers that strengthen the plant cell walls by interacting with cellulose in the form of storage polysaccharides. They are abundant in nature and are majorly present in the secondary walls of flowering plants. They are primarily extracted from the leguminous seed endosperms and display a wide variation at the structural and abundance level amongst different plant species. Over the last few decades, galactomannans have attracted huge attention due to their unique functional, solution and rheological properties, generally defined by their molar mass and the degree of substitution by galactosyl side chain, which differs between plants. Further, they are nontoxic, originate from renewable sources, fairly inexpensive, and are amenable to both chemical and biochemical modification. Moreover, excellent thickening, stabilizing and gelling abilities of these biopolymers have found extensive use in food, pharmaceutical, biomedical and cosmetic industries. Significant progress has been made to identify and characterize the genes responsible for biosynthesis of galactomannan along with the elucidation of controlling networks by using genetic, bioinformatics and biochemical approaches. This is the first comprehensive coverage on galactomannans which combines detailed structural and physicochemical properties as well as biology associated with the metabolism of galactomannans. It also focuses on different leguminous sources leading to various food and non-food applications of galactomannans.


Assuntos
Fabaceae , Galactose/análogos & derivados , Mananas , Sementes
8.
Mol Biol Rep ; 49(1): 217-226, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34800230

RESUMO

BACKGROUND: Pigeonpea (Cajanus cajan L.) is a photoperiod-sensitive short-day plant. Understanding the flowering-related genes is critical to developing photoperiod insensitive cultivars. METHODS: The CCT family genes were identified using 'CCT DOMAIN PROTEIN' as a keyword and localized on the chromosomes using the BLAST search option available at the LIS database. The centromeric positions were identified through BLAST search using the centromeric repeat sequence of C. cajan as a query against the chromosome-wise FASTA files downloaded from the NCBI database. The CCT family genes were classified based on additional domains and/or CCT domains. The orthologous and phylogenetic relationships were inferred using the OrthoFinder and MEGA 10.1 software, respectively. The CCT family genes' expression level in photoperiod-sensitive and insensitive genotypes was compared using RNA-seq data and qRT-PCR analysis. RESULTS: We identified 33 CCT family genes in C. cajan distributed on ten chromosomes and nine genomic scaffolds. They were classified into CMF-type, COL-type, PRR-type, and GTCC- type. The CCT family genes of legumes exhibited an extensive orthologous relationship. Glycine max showed the maximum similarity of CCT family genes with C. cajan. The expression analysis of CCT family genes using photoperiod insensitive (ICP20338) and photoperiod sensitive (MAL3) genotypes of C. cajan demonstrated that CcCCT4 and CcCCT23 are the active CONSTANS in ICP20338. In contrast, only CcCCT23 is active in MAL3. CONCLUSION: The CCT family genes in C. cajan vary considerably in structure and domain types. They are maximally similar to soybean's CCT family genes. The differential photoperiod response of pigeonpea genotypes, ICP20338 and MAL3, is possibly due to the difference in the number and types of active CONSTANS in them.


Assuntos
Cajanus/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cajanus/genética , Mapeamento Cromossômico , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genótipo , Família Multigênica , Fotoperíodo , Filogenia , Proteínas de Plantas/química , Domínios Proteicos
9.
Funct Integr Genomics ; 21(1): 139-156, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33389259

RESUMO

Extensive transcriptomic skimming was conducted to decipher molecular, morphological, physiological, and biochemical responses in salt-tolerant (PDL-1) and salt-sensitive (L-4076) cultivars under control (0 mM NaCl) and salinity stress (120 mM NaCl) conditions at seedling stage. Morphological, physiological, and biochemical studies revealed that PDL-1 exhibited no salt injury and had higher K+/Na+ ratio, relative water content (RWC), chlorophyll, glycine betaine, and soluble sugars in leaves while lower H2O2 induced fluorescence signals in roots as compared to L-4076. Transcriptomic profile revealed a total of 17,433 significant differentially expressed genes (DEGs) under different treatments and cultivar combinations that include 2557 upregulated and 1533 downregulated transcripts between contrasting cultivars under salt stress. Accuracy of transcriptomic analysis was validated through quantification of 10 DEGs via quantitative real-time polymerase chain reaction (qRT-PCR). DEGs were functionally characterized by Gene Ontology (GO) analysis and assigned to various metabolic pathways using MapMan. DEGs were found to be significantly associated with phytohormone-mediated signal transduction, cellular redox homoeostasis, secondary metabolism, nitrogen metabolism, and cellular stress signaling. The present study revealed putative molecular mechanism of salinity tolerance in lentil together with identification of 5643 simple sequence repeats (SSRs) and 176,433 single nucleotide polymorphisms (SNPs) which can be utilized to enhance linkage maps density along with detection of quantitative trait loci (QTLs) associated with traits of interests. Stress-related pathways identified in this study divulged plant functioning that can be targeted to improve salinity stress tolerance in crop species.


Assuntos
Lens (Planta)/genética , Tolerância ao Sal , Transcriptoma , Lens (Planta)/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
10.
Plant Cell Rep ; 40(5): 881-898, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33837822

RESUMO

KEY MESSAGE: Comparative transcriptome analyses accompanied by biochemical assays revealed high variability in heat stress response in Cajanus species. Among the studied species, C. scarabaeoides was the most thermotolerant followed by C. cajanifolius, C. cajan, and C. acutifolius. Pigeonpea is one of the climate-resilient grain legumes. Though the optimum temperature for cultivated pigeonpea is ~ 25-35 °C, its wild relatives grow in temperatures ranging between 18 and 45 °C. To gain insight into molecular mechanisms responsible for the heat stress tolerance in pigeonpea, we conducted time-series transcriptome analysis of one pigeonpea cultivar (Cajanus cajan) and two wild relatives, Cajanus acutifolius, and Cajanus scarabaeoides subjected to heat stress at 42 ± 2 ºC for 30 min and 3 h. A total of 9521, 12,447, and 5282 identified transcripts were differentially expressed in C. cajan, C. acutifolius, and C. scarabaeoides, respectively. In this study, we observed that a significant number of genes undergo alternative splicing in a species-specific pattern during heat stress. Gene expression profiling analysis, histochemical assay, chlorophyll content, and electrolyte leakage assay showed that C. scarabaeoides has adaptive features for heat stress tolerance. The gene set enrichment analyses of differentially expressed genes in these Cajanus species during heat stress revealed that oxidoreductase activity, transcription factor activity, oxygen-evolving complex, photosystem-II, thylakoid, phenylpropanoid biosynthetic process, secondary metabolic process, and flavonoid biosynthetic process were highly affected. The histochemical assay showed more lipid peroxidation in C. acutifolius compared to other Cajanus species inferring the presence of higher quantities of polyunsaturated fatty acids in the plasma membrane which might have led to severe damage of membrane-bound organelles like chloroplast, and high electrolyte leakage during heat stress. This study paves the way for the identification of candidate genes, which can be useful for the development of thermo-tolerant pigeonpea cultivars.


Assuntos
Transcriptoma/genética , Cajanus/genética , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genótipo , Peroxidação de Lipídeos/genética , Peroxidação de Lipídeos/fisiologia
11.
BMC Plant Biol ; 20(1): 74, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054447

RESUMO

BACKGROUND: Pigeon pea (Cajanus cajan L.) is the sixth major legume crop widely cultivated in the Indian sub-continent, Africa, and South-east Asia. Cytoplasmic male-sterility (CMS) is the incompetence of flowering plants to produce viable pollens during anther development. CMS has been extensively utilized for commercial hybrid seeds production in pigeon pea. However, the molecular basis governing CMS in pigeon pea remains unclear and undetermined. In this study transcriptome analysis for exploring differentially expressed genes (DEGs) between cytoplasmic male-sterile line (AKCMS11) and its fertility restorer line (AKPR303) was performed using Illumina paired-end sequencing. RESULTS: A total of 3167 DEGs were identified, of which 1432 were up-regulated and 1390 were down-regulated in AKCMS11 in comparison to AKPR303. By querying, all the 3167 DEGs against TAIR database, 34 pigeon pea homologous genes were identified, few involved in pollen development (EMS1, MS1, ARF17) and encoding MYB and bHLH transcription factors with lower expression in the sterile buds, implying their possible role in pollen sterility. Many of these DEGs implicated in carbon metabolism, tricarboxylic acid cycle (TCA), oxidative phosphorylation and elimination of reactive oxygen species (ROS) showed reduced expression in the AKCMS11 (sterile) buds. CONCLUSION: The comparative transcriptome findings suggest the potential role of these DEGs in pollen development or abortion, pointing towards their involvement in cytoplasmic male-sterility in pigeon pea. The candidate DEGs identified in this investigation will be highly significant for further research, as they could lend a comprehensive basis in unravelling the molecular mechanism governing CMS in pigeon pea.


Assuntos
Cajanus/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Cajanus/genética , Regulação para Baixo/fisiologia , Perfilação da Expressão Gênica , Proteínas de Plantas/metabolismo , Reprodução/genética , Regulação para Cima/fisiologia
12.
Plant Cell ; 29(8): 1952-1969, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28808135

RESUMO

The conserved eukaryotic translation initiation factor 5B, eIF5B, is a GTPase that acts late in translation initiation. We found that an Arabidopsis thaliana mutant sensitive to hot temperatures 3 (hot3-1), which behaves as the wild type in the absence of stress but is unable to acclimate to high temperature, carries a missense mutation in the eIF5B1 gene (At1g76810), producing a temperature sensitive protein. A more severe, T-DNA insertion allele (hot3-2) causes pleiotropic developmental phenotypes. Surprisingly, Arabidopsis has three other eIF5B genes that do not substitute for eIF5B1; two of these appear to be in the process of pseudogenization. Polysome profiling and RNA-seq analysis of hot3-1 plants show delayed recovery of polysomes after heat stress and reduced translational efficiency (TE) of a subset of stress protective proteins, demonstrating the critical role of translational control early in heat acclimation. Plants carrying the severe hot3-2 allele show decreased TE of auxin-regulated, ribosome-related, and electron transport genes, even under optimal growth conditions. The hot3-2 data suggest that disrupting specific eIF5B interactions on the ribosome can, directly or indirectly, differentially affect translation. Thus, modulating eIF5B interactions could be another mechanism of gene-specific translational control.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Iniciação em Eucariotos/genética , Pleiotropia Genética , Mutação/genética , Biossíntese de Proteínas/genética , Temperatura , Alelos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/genética , Transporte de Elétrons/genética , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Resposta ao Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Mutagênese Insercional , Fenótipo , Filogenia , Desenvolvimento Vegetal , Polirribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Termotolerância , Fatores de Tempo
13.
Mol Biol Rep ; 47(5): 3305-3317, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32248382

RESUMO

In higher plants, flower development is a result of crosstalk between many factors like photoperiod, vernalization, hormone concentration, epigenetic modification etc. and is also regulated by non-coding RNAs (ncRNAs). In the present study, we are reporting the involvement of long non-coding RNAs (lncRNAs) and miRNAs during the process of flower development in Cajanus scarabaeoides, an important wild relative of pigeonpea. The transcriptome of floral and leaf tissues revealed a total of 1672 lncRNAs and 57 miRNAs being expressed during flower development. Prediction analysis of identified lncRNAs showed that 1593 lncRNAs were targeting 3420 mRNAs and among these, 98 were transcription factors (TFs) belonging to 48 groups. All the identified 57 miRNAs were novel, suggesting their genera specificity. Prediction of the secondary structure of lncRNAs and miRNAs followed by interaction analysis revealed that 199 lncRNAs could interact with 47 miRNAs where miRNAs were acting in the root of interaction. Gene Ontology of the ncRNAs and their targets showed the potential role of lncRNAs and miRNAs in the flower development of C. scarabaeoides. Among the identified interactions, 17 lncRNAs were endogenous target mimics (eTMs) for miRNAs that target flowering-related transcription factors. Expression analysis of identified transcripts revealed that higher expression of Csa-lncRNA_1231 in the bud sequesters Csa-miRNA-156b by indirectly mimicking the miRNA and leading to increased expression of flower-specific SQUAMOSA promoter-binding protein-like (SPL-12) TF indicating their potential role in flower development. The present study will help in understanding the molecular regulatory mechanism governing the induction of flowering in C. scarabaeoides.


Assuntos
Cajanus/genética , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA de Plantas/genética , RNA não Traduzido/genética , Fatores de Transcrição/genética , Transcriptoma
14.
Mol Biol Rep ; 46(2): 2067-2084, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30759299

RESUMO

RNA editing is a process which leads to post-transcriptional alteration of the nucleotide sequence of the corresponding mRNA molecule which may or may not lead to changes at the protein level. Apart from its role in providing variability at the transcript and protein levels, sometimes, such changes may lead to abnormal expression of the mitochondrial gene leading to a cytoplasmic male sterile phenotype. Here we report the editing status of 20 major mitochondrial transcripts in both male sterile (AKCMS11) and male fertile (AKPR303) pigeonpea genotypes. The validation of the predicted editing sites was done by mapping RNA-seq reads onto the amplified mitochondrial genes, and 165 and 159 editing sites were observed in bud tissues of the male sterile and fertile plant respectively. Among the resulting amino acid alterations, the most frequent one was the conversion of hydrophilic amino acids to hydrophobic. The alterations thus detected in our study indicates differential editing, but no major change in terms of the abnormal protein structure was detected. However, the above investigation provides an insight into the behaviour of pigeonpea mitochondrial genome in native and alloplasmic state and could hold clues in identification of editing factors and their role in adaptive evolution in pigeonpea.


Assuntos
Cajanus/genética , Fertilidade/genética , Mitocôndrias/genética , Sequência de Bases , Citoplasma/metabolismo , Citosol/metabolismo , Perfilação da Expressão Gênica/métodos , Genes Mitocondriais/genética , Genes de Plantas/genética , Edição de RNA/genética , Edição de RNA/fisiologia , RNA de Plantas/genética , Transcriptoma/genética
15.
BMC Plant Biol ; 18(1): 141, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986650

RESUMO

BACKGROUND: Water permeability governed by seed coat is a major facet of seed crops, especially soybean, whose seeds lack physiological dormancy and experience rapid deterioration in seed viability under prolonged storage. Moreover, the physiological and chemical characteristics of soybean seeds are known to vary with seed coat color. Thus, to underpin the genes controlling water permeability in soybean seeds, we carried out an in-depth characterization of the associated genomic variation. RESULTS: In the present study, we have analyzed genomic variation between cultivated soybean and its wild progenitor with implications on seed permeability, a trait related to seed storability. Whole genome resequencing of G.max and G. soja, identified SNPs and InDels which were further characterized on the basis of their genomic location and impact on gene expression. Chromosomal density distribution of the variation was assessed across the genome and genes carrying SNPs and InDels were characterized into different metabolic pathways. Seed hardiness is a complex trait that is affected by the allelic constitution of a genetic locus as well as by a tricky web of plant hormone interactions. Seven genes that hold a probable role in the determination of seed permeability were selected and their expression differences at different stages of water imbibition were analyzed. Variant interaction network derived 205 downstream interacting partners of 7 genes confirmed their role in seed related traits. Interestingly, genes encoding for Type I- Inositol polyphosphate 5 phosphatase1 and E3 Ubiquitin ligase could differentiate parental genotypes, revealed protein conformational deformations and were found to segregate among RILs in coherence with their permeability scores. The 2 identified genes, thus showed a preliminary association with the desirable permeability characteristics. CONCLUSION: In the light of above outcomes, 2 genes were identified that revealed preliminary, but a relevant association with soybean seed permeability trait and hence could serve as a primary material for understanding the molecular pathways controlling seed permeability traits in soybean.


Assuntos
Glycine max/genética , Mutação INDEL/genética , Polimorfismo de Nucleotídeo Único/genética , Sementes/metabolismo , Cromossomos de Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , Mutação INDEL/fisiologia , Permeabilidade , Polimorfismo de Nucleotídeo Único/fisiologia , Glycine max/metabolismo , Glycine max/fisiologia
16.
Plant Biotechnol J ; 16(6): 1241-1257, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29193664

RESUMO

Owing to the presence of 80% soluble dietary fibre, high protein content and high value gum, clusterbean (Cyamopsis tetragonoloba) has recently emerged as an economically important legume. The developing clusterbean seeds accumulate 90% galactomannans in the endosperm and, therefore, can be used as a model crop to understand galactomannan biosynthesis and its regulation. miRNAs are tiny master regulators of their corresponding target genes, resulting in variations in the amounts of their metabolic end products. To understand the role of these regulators in galactomannan biosynthesis regulation, small RNA libraries were prepared and sequenced from five tissues of clusterbean genotype RGC-936, and miRanalyzer and DSAP programs were used to identify conserved miRNAs and novel small RNAs. A total of 187 known and 171 novel miRNAs were found to be differentially expressed, of which 10 miRNAs were validated. A complicated network topology and 35% sharing of the target mRNAs between known and novel miRNAs suggest random evolution of novel miRNAs. The gene ontology (GO) annotation of potential target genes revealed the genes coding for signalling and carbohydrate metabolism (50.10%), kinases and other enzymes (20.75%), transcription factors (10.20%), transporters (8.35%) and other targets (10.6%). Two novel unigenes were annotated as ManS (mannosyltransferase/mannan synthase) and UGE (UDP- D-glucose 4-epimerase) and validated as targets for three novel miRNAs, that is Ct-miR3130, Ct-miR3135 and Ct-miR3157. Our findings reveal that these novel miRNAs could play an important role in the regulation of the galactomannan pathway in C. tetragonoloba and possibly other galactomannan-producing species.


Assuntos
Cyamopsis/metabolismo , Mananas/biossíntese , MicroRNAs/metabolismo , Galactose/análogos & derivados , Genoma de Planta , Análise de Sequência de RNA
17.
BMC Genomics ; 18(1): 206, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28241862

RESUMO

BACKGROUND: Drought stress is one of the most harmful abiotic stresses in crop plants. As a moderately drought tolerant crop, lentil is a major crop in rainfed areas and a suitable candidate for drought stress tolerance research work. Screening for drought tolerance stress under hydroponic conditions at seedling stage with air exposure is an efficient technique to select genotypes with contrasting traits. Transcriptome analysis provides valuable resources, especially for lentil, as here the information on complete genome sequence is not available. Hence, the present studies were carried out. RESULTS: This study was undertaken to understand the biochemical mechanisms and transcriptome changes involved in imparting adaptation to drought stress at seedling stage in drought-tolerant (PDL-2) and drought-sensitive (JL-3) cultivars. Among different physiological and biochemical parameters, a significant increase was recorded in proline, glycine betaine contents and activities of SOD, APX and GPX in PDL-2 compared to JL-3while chlorophyll, RWC and catalase activity decreased significantly in JL-3. Transcriptome changes between the PDL-2 and JL-3 under drought stress were evaluated using Illumina HiSeq 2500 platform. Total number of bases ranged from 5.1 to 6.7 Gb. Sequence analysis of control and drought treated cDNA libraries of PDL-2 and JL-3 produced 74032, 75500, 78328 and 81523 contigs, respectively with respective N50 value of 2011, 2008, 2000 and 1991. Differential gene expression of drought treated genotypes along with their controls revealed a total of 11,435 upregulated and 6,934 downregulated transcripts. For functional classification of DEGs, KEGG pathway annotation analysis extracted a total of 413 GO annotation terms where 176 were within molecular process, 128 in cellular and 109 in biological process groups. CONCLUSION: The transcriptional profiles provide a foundation for deciphering the underlying mechanism for drought tolerance in lentil. Transcriptional regulation, signal transduction and secondary metabolism in two genotypes revealed significant differences at seedling stage under severe drought. Our finding suggests role of candidate genes for improving drought tolerance in lentil.


Assuntos
Secas , Perfilação da Expressão Gênica , Genes de Plantas , Lens (Planta)/genética , Antioxidantes/metabolismo , Clorofila/análise , Regulação para Baixo , Biblioteca Gênica , Genótipo , Mutação INDEL/genética , Lens (Planta)/crescimento & desenvolvimento , Peroxidação de Lipídeos , Repetições de Microssatélites/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Plântula/genética , Análise de Sequência de DNA , Regulação para Cima
18.
Plant Cell Rep ; 35(8): 1629-53, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27289592

RESUMO

KEY MESSAGE: Single nucleotide polymorphism in sugar pathway and disease resistance genes showing genetic association with sugar content and red rot resistance would be useful in marker-assisted genetic improvement of sugarcane. Validation and genotyping of potential sequence variants in candidate genes are necessary to understand their functional significance and trait association potential. We discovered, characterized, validated and genotyped SNPs and InDels in sugar pathway and disease resistance genes of Saccharum complex and sugarcane varieties using amplicon sequencing and CAPS assays. The SNPs were abundant in the non-coding 3'UTRs than 5'UTRs and coding sequences depicting a strong bias toward C to T transition substitutions than transversions. Sequencing of cloned amplicons validated 61.6 and 45.2 % SNPs detected in silico in 21 sugar pathway and 16 disease resistance genes, respectively. Sixteen SNPs in four sugar pathway genes and 10 SNPs in nine disease resistance genes were validated through cost-effective CAPS assay. Functional and adaptive significance of SNP and protein haplotypes identified in sugar pathway and disease resistance genes was assessed by correlating their allelic variation with missense amino acid substitutions in the functional domains, alteration in protein structure models and possible modulation of catalytic enzyme activity in contrasting high and low sugar and moderately red rot resistant and highly susceptible sugarcane genotypes. A strong genetic association of five SNPs in the sugar pathway and disease resistance genes, and an InDel marker in the promoter sequence of sucrose synthase-2 gene, with sugar content and red rot resistance, was evident. The functionally relevant SNPs and InDels, detected and validated in sugar pathway and disease resistance genes, and genic CAPS markers designed, would be of immense use in marker-assisted genetic improvement of sugarcane for sugar content and disease resistance.


Assuntos
Metabolismo dos Carboidratos/genética , Resistência à Doença/genética , Genes de Plantas , Polimorfismo de Nucleotídeo Único/genética , Saccharum/genética , Sequência de Bases , Perfilação da Expressão Gênica , Marcadores Genéticos , Técnicas de Genotipagem , Haplótipos/genética , Mutação INDEL , Doenças das Plantas/genética , Reprodutibilidade dos Testes , Alinhamento de Sequência
19.
Indian J Biochem Biophys ; 52(1): 75-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26040114

RESUMO

Plants, being sessile in nature, have developed mechanisms to cope with high salt concentrations in the soil. In this study, the effects of NaCl (50-200 mM) on expression of high-affinity potassium transporters (HKTs), antioxidant enzymes and their isozyme profiles were investigated in two contrasting bread wheat (Triticum aestivum L.) genotypes viz., HD2329 (salt-sensitive) and Kharchia65 (salt-tolerant). Kharchia65 can successfully grow in salt affected soils, while HD2329 cannot tolerate salt stress. Differential expression studies of two HKT genes (TaHKT2;1.1 and TaHKT2;3.1) revealed their up-regulated expression (-1.5-fold) in the salt-sensitive HD2329 and down-regulated (-5-fold) inducible expression in the salt-tolerant genotype (Kharchia65). Specific activity of antioxidant enzymes, viz. superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR) was found to be higher in the salt-tolerant genotype. Isozyme profile of two (POX and GR) antioxidant enzymes showed polymorphism between salt-tolerant and salt-sensitive genotypes. A new gene TaHKT2;3.1 was also identified and its expression profile and role in salt stress tolerance in wheat was also studied. Partial sequences of the TaHKT2;1.1 and TaHKT2;3.1 genes from bread wheat were submitted to the EMBL GenBank database. Our findings indicated that defence responses to salt stress were induced differentially in contrasting bread wheat genotypes which provide evidences for functional correlation between salt stress tolerance and differential biochemical and molecular expression patterns in bread wheat.


Assuntos
Genótipo , Cloreto de Sódio , Estresse Fisiológico , Triticum/genética , Sequência de Bases , Primers do DNA , Genes de Plantas , Reação em Cadeia da Polimerase , Triticum/fisiologia
20.
Int J Biol Macromol ; 257(Pt 2): 128559, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061506

RESUMO

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important grain legume crop with a broad range of 90 to 300 days for maturity. To identify the genomic variations associated with the early maturity, we conducted whole-genome resequencing of an early-maturing pigeonpea mutant TAT-10 and its wild type parent T21. A total of 135.67 and 146.34 million sequencing reads were generated for T21 and TAT-10, respectively. From this resequencing data, 1,397,178 and 1,419,904 SNPs, 276,741 and 292,347 InDels, and 87,583 and 92,903 SVs were identified in T21 and TAT-10, respectively. We identified 203 genes in the pigeonpea genome that are homologs of flowering-related genes in Arabidopsis and found 791 genomic variations unique to TAT-10 linked to 94 flowering-related genes. We identified three candidate genes for early maturity in TAT-10; Suppressor of FRI 4 (SUF4), Early Flowering In Short Days (EFS), and Probable Lysine-Specific Demethylase ELF6. The variations in ELF6 were predicted to be possibly damaging and the expression profiles of EFS and ELF6 also supported their probable role during early flowering in TAT-10. The present study has generated information on genomic variations associated with candidate genes for early maturity, which can be further studied and exploited for developing the early-maturing pigeonpea cultivars.


Assuntos
Cajanus , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Genoma de Planta/genética , Genes de Plantas , Locos de Características Quantitativas , Genômica , Cajanus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA