Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 14(3): 471-83, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25527621

RESUMO

A distinct feature of human prostate cancer (PCa) is the development of osteoblastic (bone-forming) bone metastases. Metastatic growth in the bone is supported by factors secreted by PCa cells that activate signaling networks in the tumor microenvironment that augment tumor growth. To better understand these signaling networks and identify potential targets for therapy of bone metastases, we characterized the secretome of a patient-derived xenograft, MDA-PCa-118b (PCa-118b), generated from osteoblastic bone lesion. PCa-118b induces osteoblastic tumors when implanted either in mouse femurs or subcutaneously. To study signaling molecules critical to these unique tumor/microenvironment-mediated events, we performed mass spectrometry on conditioned media of isolated PCa-118b tumor cells, and identified 26 secretory proteins, such as TGF-ß2, GDF15, FGF3, FGF19, CXCL1, galectins, and ß2-microglobulin, which represent both novel and previously published secreted proteins. RT-PCR using human versus mouse-specific primers showed that TGFß2, GDF15, FGF3, FGF19, and CXCL1 were secreted from PCa-118b cells. TGFß2, GDF15, FGF3, and FGF19 function as both autocrine and paracrine factors on tumor cells and stromal cells, that is, endothelial cells and osteoblasts. In contrast, CXCL1 functions as a paracrine factor through the CXCR2 receptor expressed on endothelial cells and osteoblasts. Thus, our study reveals a complex PCa bone metastasis secretome with paracrine and autocrine signaling functions that mediate cross-talk among multiple cell types within the tumor microenvironment.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Proteômica/métodos , Microambiente Tumoral , Animais , Neoplasias Ósseas/patologia , Comunicação Celular , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/metabolismo , Humanos , Masculino , Camundongos , Camundongos SCID , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Neoplasias da Próstata/patologia , Transdução de Sinais , Células Estromais/fisiologia
2.
Electrophoresis ; 33(12): 1842-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22740472

RESUMO

Sample displacement chromatography (SDC) in reversed-phase and ion-exchange modes was introduced approximately 20 years ago. This method was first used for the preparative purification of peptides and proteins. Recently, SDC in ion-exchange mode was also successfully used for enrichment of low-abundance proteins from human plasma. In this paper, the use of SDC for the separation of plasma proteins in hydrophobic interaction mode is demonstrated. By use of two or more columns coupled in series during sample application, and subsequent elution of detached columns in parallel, additional separation of bound proteins was achieved. Further low-abundance, physiologically active proteins could be highly enriched and detected by ESI-MS/MS.


Assuntos
Proteínas Sanguíneas/isolamento & purificação , Cromatografia Líquida/métodos , Sulfato de Amônio , Proteínas Sanguíneas/química , Precipitação Química , Bases de Dados de Proteínas , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Cloreto de Sódio , Espectrometria de Massas por Ionização por Electrospray
3.
Biotechnol J ; 16(11): e2100100, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34347362

RESUMO

Ion-exchange chromatography is still one of the most popular protein separation techniques. Before chromatographic separation, the high salt concentration in various samples necessitates additional steps. Therefore, low salt tolerance of ion-exchange resins is a drawback that needs to be addressed. Herein, the differences in salt tolerance and hydrophobicity of strong cation-exchange TOYOPEARL resins of sulfonium and sulfate-types were investigated. Despite only a minor structural difference, differences in selectivity and salt tolerance between the sulfate and sulfonic groups were detected. In silico calculations were also carried out for model substances representing the sulfonium and sulfate groups, wherein significant differences in hydrophobicity was observed. These experiments confirmed the hypothesis that the salt tolerance, higher affinity, and selectivity for certain vitamin K dependent clotting factors are interrelated and dependent on the presence of the sulfate group. Separation of clotting factor IX from the prothrombin complex concentrate further to confirmed the affinity for these proteins. The results show that the use of only a resin with the sulfate ligand and not with the sulfonic acid ligand allows for a facile and rapid separation of clotting factor IX and other vitamin K dependent clotting factors.


Assuntos
Resinas de Troca de Cátion , Heparina , Cátions , Cromatografia por Troca Iônica , Concentração de Íons de Hidrogênio , Sulfatos
4.
J Proteomics ; 147: 226-235, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27109345

RESUMO

UNLABELLED: Foodborne pathogens, mostly bacteria and fungi, but also some viruses, prions and protozoa, contaminate food during production and processing, but also during storage and transport before consuming. During their growth these microorganisms can secrete different components, including toxins, into the extracellular environment. Other harmful substances can be also liberated and can contaminate food after disintegration of food pathogens. Some bacterial and fungal toxins can be resistant to inactivation, and can survive harsh treatment during food processing. Many of these molecules are involved in cellular processes and can indicate different mechanisms of pathogenesis of foodborne organisms. More knowledge about food contaminants can also help understand their inactivation. In the present review the use of proteomics, peptidomics and metabolomics, in addition to other foodomic methods for the detection of foodborne pathogenic fungi and bacteria, is overviewed. Furthermore, it is discussed how these techniques can be used for discovering biomarkers for pathogenicity of foodborne pathogens, determining the mechanisms by which they act, and studying their resistance upon inactivation in food of animal and plant origin. BIOLOGICAL SIGNIFICANCE: Comprehensive and comparative view into the genome and proteome of foodborne pathogens of bacterial or fungal origin and foodomic, mostly proteomic, peptidomic and metabolomic investigation of their toxin production and their mechanism of action is necessary in order to get further information about their virulence, pathogenicity and survival under stress conditions. Furthermore, these data pave the way for identification of biomarkers to trace sources of contamination with food-borne microorganisms and their endo- and exotoxins in order to ensure food safety and prevent the outbreak of food-borne diseases. Therefore, detection of pathogens and their toxins during production, transport and before consume of food produce, as well as protection against food spoilage is a task of great social, economic and public health importance.


Assuntos
Contaminação de Alimentos/análise , Microbiologia de Alimentos , Metabolômica/métodos , Proteômica/métodos , Animais , Manipulação de Alimentos/métodos , Manipulação de Alimentos/normas , Doenças Transmitidas por Alimentos/diagnóstico , Humanos , Toxinas Biológicas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA