RESUMO
BACKGROUND: Since 2015, malaria vector control on Bioko Island has relied heavily upon long-lasting insecticidal nets (LLIN) to complement other interventions. Despite significant resources utilised, however, achieving and maintaining high coverage has been elusive. Here, core LLIN indicators were used to assess and redefine distribution strategies. METHODS: LLIN indicators were estimated for Bioko Island between 2015 and 2022 using a 1x1 km grid of areas. The way these indicators interacted was used to critically assess coverage targets. Particular attention was paid to spatial heterogeneity and to differences between urban Malabo, the capital, and the rural periphery. RESULTS: LLIN coverage according to all indicators varied substantially across areas, decreased significantly soon after mass distribution campaigns (MDC) and, with few exceptions, remained consistently below the recommended target. Use was strongly correlated with population access, particularly in Malabo. After a change in strategy in Malabo from MDC to fixed distribution points, use-to-access showed significant improvement, indicating those who obtained their nets from these sources were more likely to keep them and use them. Moreover, their use rates were significantly higher than those of whom sourced their nets elsewhere. CONCLUSIONS: Striking a better balance between LLIN distribution efficiency and coverage represents a major challenge as LLIN retention and use rates remain low despite high access resulting from MDC. The cost-benefit of fixed distribution points in Malabo revealed significant advantages, offering a viable alternative for ensuring access to LLINs to those who use them.
Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Controle de Mosquitos , Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Mosquiteiros Tratados com Inseticida/provisão & distribuição , Controle de Mosquitos/métodos , Controle de Mosquitos/estatística & dados numéricos , Malária/prevenção & controle , Guiné Equatorial , Humanos , IlhasRESUMO
BACKGROUND: Adherence to anti-malarial treatment regimens is an important aspect of understanding and improving the impact of malaria case management. However, both adherence to artemisinin-based combination therapy (ACT) and the factors driving it vary widely. While many other evaluation activities have been conducted on Bioko Island, until now adherence to anti-malarial treatments, and in particular ACT has not been evaluated. METHODS: The implementation of a malaria indicator survey (MIS) conducted on Bioko in 2023 was leveraged to evaluate adherence to ACT provided to individuals testing positive following the survey. A follow-up team visited the targeted households, physically observed treatment blisters where possible, and provided messaging to household members on the importance of adhering to the treatment guidelines to household members. The team used survey data from the targeted households to make messaging as relevant to the household's particular context as possible. RESULTS: Overall ACT adherence on Bioko Island was low, around 50%, and this varied demographically and geographically. Some of the highest transmission areas had exceptionally low adherence, but no systematic relationship between proper adherence and Plasmodium falciparum prevalence was detected. Estimates of adherence from follow-up visits were much lower than survey-based estimates in the same households (52.5% versus 87.1%), suggesting that lack of proper adherence may be a much larger issue on Bioko Island than previously thought. CONCLUSION: Representative surveys can be easily adapted to provide empirical estimates of adherence to anti-malarial treatments, complementary to survey-based and health facility-based estimates. The large discrepancy between adherence as measured in this study and survey-based estimates on Bioko Island suggests a health facility-based study to quantify adherence among the population receiving treatment for symptomatic malaria may be necessary.
Assuntos
Antimaláricos , Adesão à Medicação , Projetos Piloto , Guiné Equatorial , Antimaláricos/uso terapêutico , Humanos , Feminino , Masculino , Adulto , Adesão à Medicação/estatística & dados numéricos , Pré-Escolar , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Criança , Malária Falciparum/tratamento farmacológico , Lactente , Artemisininas/uso terapêutico , Inquéritos e Questionários , Idoso , IlhasRESUMO
BACKGROUND: In 2017, several new housing districts were constructed on Bioko Island, Equatorial Guinea. This case study assessed the impact construction projects had on mosquito larval habitats and the effectiveness of larval source management in reducing malaria vector density within the surrounding area. METHODS: Anopheline larval presence was assessed at 11 new construction sites by the proportion of larval habitats containing Anopheline pupae and late instar larval stages. Bacillus thuringiensis israelensis (Bti) larvicide was applied weekly to nine locations for 30 weeks, while two locations received no larvicide and acted as controls. Adult mosquito density was monitored via human landing collections in adjacent communities of six construction sites, including the two control sites. RESULTS: The sites that received Bti had significantly lower observation rates of both pupae (3.2% vs. 18.0%; p < 0.001) and late instar Anopheles spp. mosquitoes (14.1 vs. 43.6%; p < 0.001) compared to the two untreated sites. Anopheles spp. accounted for 67% of mosquitoes collected with human landing collections and were captured at significantly lower levels in communities adjacent to treated construction sites compared to untreated sites (p < 0.001), with an estimated 38% reduction in human biting rate (IRR: 0.62, 95% CI IRR: 0.55, 0.69). Seven months after the start of the study, untreated sites were treated due to ethical concerns given results from treatment sties, necessitating immediate Bti application. The following week, the number of habitats, the proportion of larval sites with Anopheles spp. pupae, late instars, and adult biting rates in adjacent communities to these sites all decreased to comparable levels across all sites. CONCLUSION: Findings suggest larval source management represents an effective intervention to suppress mosquito populations during infrastructure development. Incorporating larval source management into ongoing and planned construction initiatives represents an opportunity to fine tune vector control in response to anthropogenetic changes. Ideally, this should become standard practice in malaria-endemic regions in order to reduce viable mosquito habitats that are common by-products of construction.
Assuntos
Anopheles , Bacillus thuringiensis , Malária , Animais , Humanos , Anopheles/fisiologia , Malária/epidemiologia , Controle de Mosquitos/métodos , Larva , Reforma Urbana , Mosquitos Vetores , Pupa , EcossistemaRESUMO
OBJECTIVES: This study assesses exposure to malaria vector mosquitos that is nonpreventable through use of nets, the contribution of outdoor and indoor biting towards residual vector exposure, and the risk factors for being bitten and for being infected with malaria parasites on Bioko Island, Equatorial Guinea. METHODS: Human behavior and malaria infection data were collected from 13,735 randomly selected residents during cross-sectional surveys, concomitantly with entomological human landing catches, indoors and outdoors, in 20 locations on the Island. Self-reported time of going indoors, going to bed and whether using a net were analyzed to impute for each respondent the number of bites received outdoors and indoors during the night before the survey. RESULTS: On average, each person received 2.7 (95% CI: 2.6-2.8) bites per night outdoors, 8.5 (8.3 to 8.7) bites indoors if not using a net, and 4.7 (4.5 to 4.8) bites indoors if using a net. Malaria infection was associated with more bites, regardless of whether received indoors or outdoors. Older age, male gender, not using a net, rural location, and going indoors later increased the risk of being bitten. The proportion of bites not averted by using a net was estimated as 66% (61 to 71). CONCLUSIONS: A large proportion of biting, mostly indoors, may not be preventable by bednets. Tools targeting indoor biting should be prioritized in Bioko. Novel vector control tools are urgently needed to reduce overall exposure to mosquito bites.
Assuntos
Mordeduras e Picadas de Insetos , Malária , Controle de Mosquitos , Mosquitos Vetores , Humanos , Guiné Equatorial/epidemiologia , Mordeduras e Picadas de Insetos/prevenção & controle , Mordeduras e Picadas de Insetos/epidemiologia , Masculino , Feminino , Adulto , Animais , Malária/transmissão , Malária/prevenção & controle , Malária/epidemiologia , Estudos Transversais , Controle de Mosquitos/métodos , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Criança , Mosquitos Vetores/parasitologia , Pré-Escolar , Fatores de Risco , Lactente , IdosoRESUMO
Background: Since 2015, malaria vector control on Bioko Island has relied heavily upon long-lasting insecticidal nets (LLIN) to complement other interventions. Despite significant resources utilised, however, achieving and maintaining high coverage has been elusive. Here, core LLIN indicators were used to assess and redefine distribution strategies. Methods: LLIN indicators were estimated for Bioko Island between 2015 and 2022 using a 1×1 km grid of areas. The way these indicators interacted was used to critically assess coverage targets. Particular attention was paid to spatial heterogeneity and to differences between urban Malabo, the capital, and the rural periphery. Results: LLIN coverage according to all indicators varied substantially across areas, decreased significantly soon after mass distribution campaigns (MDC) and, with few exceptions, remained consistently below the recommended target. Use was strongly correlated with population access, particularly in Malabo. After a change in strategy in Malabo from MDC to fixed distribution points, use-to-access showed significant improvement, indicating those who obtained their nets from these sources were more likely to keep them and use them. Moreover, their use rates were significantly higher than those of whom sourced their nets elsewhere. Conclusions: Striking a better balance between LLIN distribution efficiency and coverage represents a major challenge as LLIN retention and use rates remain low despite high access resulting from MDC. The cost benefit of fixed distribution points in Malabo was deemed significant, providing a viable alternative for guaranteeing access to LLINs to those who use them.