RESUMO
Unveiling past tipping points is a prerequisite for a better understanding of how individual species and entire ecosystems will respond to future climate change. Such knowledge is key for the implementation of biodiversity conservation. We identify the relationships between peatland vegetation and hydrological conditions over the past 2000 years using plant macrofossils, testate amoebae-based quantitative hydrological reconstructions and Sphagnum-moss functional traits from seven Polish peatland records. Using threshold indicator taxa analysis, we discovered that plant community composition strongly converged at a water level of ca 11.7 cm, indicating a community-level tipping point. We identified 45 plant taxa that showed either an increase or a decrease in their relative abundance between 8 and 17 cm of water-level depth. Our analysis of Sphagnum community traits further showed that Sphagnum functional diversity was remarkably stable over time despite Sphagnum species sensitivity to hydrological conditions. Our results suggest that past hydrological shifts did not influence major functions of the Sphagnum community, such as photosynthetic capacity, growth and productivity, owing to species replacement with a similar functional space. Although further studies including trait plasticity will be required, our findings suggest that the capacity of the Sphagnum community to gain carbon remained stable despite hydrological changes.
Assuntos
Amoeba , Sphagnopsida , Biodiversidade , Ecologia , EcossistemaRESUMO
The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long-term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6-6.1 and ca. 4.9-3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland-forest swamp-peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8-1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts.
Assuntos
Carbono/química , Solo , Áreas Alagadas , Secas , Peru , Rios , Fatores de TempoRESUMO
Quantitative paleoecological reconstructions using biological proxies, such as diatoms, Cladocera, and chironomids, have revolutionized paleolimnology and have greatly contributed to the understanding of the past local and regional environmental changes, as well as to nature conservation. While macrophytes are good ecological indicators, they have rarely been used to reconstruct past lake-water chemistry. The present study investigates which environmental variable best explains aquatic plant community composition in Finnish, Polish, and Swedish lakes for its further use in quantitative paleoenvironmental reconstructions. The method involved the creation of a modern macrophyte-environment calibration dataset, calculation of modern calibration functions using simple averaging regression, and final reconstruction of past environmental conditions in Lake Linówek (NE Poland) from a fossil assemblage using weighted averaging calibration. The data demonstrate that conductivity and alkalinity best explained macrophyte community composition in our dataset. Species "optima" for alkalinity were influenced by the presence/absence of carbon concentrating mechanisms (CCMs), enabling the utilization of HCO3- as a carbon source. Quantitative paleoenvironmental reconstruction indicates that past water conductivity and alkalinity fluctuated depending on internal lake processes and the supply of basic ions to the lake from the catchment related to climate and soil development in the watershed during the late Glacial (â¼14,500-11,700 calibrated years before the present; cal BP) and the Holocene (11,700 cal BP-recent). We conclude that macrophytes can be successfully used for past lake-water chemistry reconstruction. Furthermore, calculated modern calibration functions for conductivity and alkalinity can be used in nature conservation for determining habitat requirements of numerous endangered macrophyte species as a basis for successful (re)introductions.
RESUMO
Protection and restoration of the CaCO3 depositing alkaline fens require an in-depth understanding of these unique and declining ecosystems. The present study investigates the development of the formerly heavy tufa depositing alkaline fen in East-Central Europe after CaCO3 precipitation markedly declined ca. 5400 cal yr BP. By combining palaeoecological and monitoring data, we aim to identify the limiting factors for tufa deposition and to recognise the vegetation and mollusc response to the change. Investigation of the current fen ecosystem included a botanical and malacological inventory and a monthly monitoring of the physicochemical properties of the groundwater emerging at the fen. It was also tested whether CaCO3 precipitates there. Transformations of the fen ecosystem since the mid-Holocene tufa decline were recognized by applying plant macrofossil and malacological analyses supplemented with organic matter and CaCO3 contents and the radiocarbon chronologies of the sediment cores. Although macroscopic tufa is currently not observed at the fen surface, the monitoring study revealed the microscopic calcite crystals at the glass slides during the spring and summer. A combination of cooling, gradual depletion of the Ca2+ pool, acidification of soils, and water table fluctuations was likely responsible for limiting tufa deposition in the mid-Holocene and maintaining this state during the late Holocene. Share of the calciphilous species' macrofossils (e.g. moss Tomentypnum nitens) declined following the sedimentary CaCO3 drop, whereas the contribution of species associated with high nutrient levels raised (e.g. Juncus articulatus). Inspection of the contemporary vegetation of the fen revealed that only Carex paniculata is associated with the calcium-rich substrate. The response of molluscs to the decline in tufa deposition remains unclear as mollusc shells did not preserve in CaCO3-depleted sediments, except for the youngest deposits. The present-day malacofauna consists of 21 species, including two rare and protected calciphilous species, namely Vertigo angustior and V. geyeri.
Assuntos
Briófitas , Ecossistema , Plantas , Europa (Continente) , Estações do AnoRESUMO
Loss of peat through increased burning will have major impacts on the global carbon cycle. In a normal hydrological state, the risk of fire propagation is largely controlled by peat bulk density and moisture content. However, where humans have interfered with the moisture status of peat either via drainage, or indirectly via climate change, we hypothesise that its botanical composition will become important to flammability, such that peats from different latitudes might have different compositionally-driven susceptibility to ignition. We use pyrolysis combustion flow calorimetry to determine the temperature of maximum thermal decomposition (Tmax) of peats from different latitudes, and couple this to a botanical composition analysis. We find that tropical peat has higher Tmax than other regions, likely on account of its higher wood content which appears to convey a greater resistance to ignition. This resistance also increases with depth, which means that loss of surface peat in tropical regions may lead to a reduction in the subsequent ignitability of deeper peat layers as they are exposed, potentially resulting in a negative feedback on increased fire occurrence and severity.
RESUMO
Rapidly increasing temperatures in high-latitude regions are causing major changes in wetland ecosystems. To assess the impact of concomitant hydroclimatic fluctuations, mineral deposition, and autogenous succession on the rate and direction of changing arctic plant communities in Arctic Alaska, we conducted detailed palaeoecological analyses using plant macrofossil, pollen, testate amoebae, elemental analyses, and radiocarbon and lead (210Pb) dating on two replicate monoliths from a peatland that developed in a river valley on the northern foothills of the Books Range. We observed an expansion of Sphagnum populations and vascular plants preferring dry habitats, such as Sphagnum warnstorfii, Sphagnum teres/squarrosum, Polytrichum strictum, Aulacomnium palustre and Salix sp., in recent decades between 2000 and 2015 CE, triggered by an increase in temperature and deepening water tables. Deepening peatland water tables became accentuated over the last two decades, when it reached its lowest point in the last 700 years. Conversely, a higher water-table between ca. 1500 and 1950 CE led to a recession of Sphagnum communities and an expansion of sedges. The almost continuous supply of mineral matter during this time led to a dominance of minerotrophic plant communities, although with varying species composition throughout the study period. The replicate cores show similar patterns, but nuanced differences are also visible, depicting fine spatial scale differences particularly in peat-forming plant distribution and the different timings of their presence. In conclusion, our study provides valuable insights into the impact of hydroclimatic fluctuations on peatland vegetation in Arctic Alaska, highlighting their tendency to dry out in recent decades. It also highlights the importance of river valley peatlands in paleoenvironmental reconstructions.
Assuntos
Ecossistema , Sphagnopsida , Áreas Alagadas , Meio Ambiente , Solo , Plantas , MineraisRESUMO
This study investigates authigenic metal (Zn, Cd, and Pb) sulfides formed in the upper (4-20 cm) layer of severely degraded soil close to ZnPb smelter in CE Europe (southern Poland). The soil layer is circumneutral (pH 6.0-6.8), organic, occasionally water-logged, and contains on average 26,400 mg kg-1 Zn, 18,800 mg kg-1 Pb, 1300 mg kg-1 Cd, and 2500 mg kg-1 of sulfur. The distribution of the authigenic sulfide mineralization is uneven, showing close association with the remains of vascular plants (Equisetaceae, Carex, and herbs). A combination of focused ion beam (FIB) technology with scanning (SEM) and transmission electron microscopy (TEM) is used to reveal the structure and organization of the metal sulfides at micro- and nanoscale resolution. The sulfides form spheroidal and botryoidal porous aggregates composed of nanocrystalline (<5 nm) ZnCd sulfide solid solution and minor discrete PbS (galena) crystals up to 15 nm. The solid solution exists in a cubic (sphalerite) polytype over a whole Zn/Cd range. An intricate core-shell structure is found to be a characteristic feature of the aggregates in which high-Zn outer layers encapsulate Cd-rich sulfide core. PbS resides between the Cd-rich and Cd poor sulfide within nano sites of increased porosity. The study highlights the importance of nanoscale analyses for the prediction of metal behavior in soils. The sulfide self-organization into complex structures and Cd encapsulation inside high-Zn sulfide indicate the occurrence of a self-sustainable mechanism specific to polluted periodically water-logged soil that limits Cd mobility. However, as the reduced Cd mobility is obtained at the Zn expense, the soil gets Cd enriched relative to Zn over extended periods. Although the study proves PbS crystallization in the soil, the process seems environmentally irrelevant even at high Pb contents, being suppressed by other soil processes (e.g., Pb sorption on organic matter). Our findings are valuable in remediation strategies and the management of contaminated soils rich in organic matter that address the mobility of toxic metals and their transfer into living organisms.
Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Metais Pesados/análise , Solo/química , Poluentes do Solo/análise , Sulfetos , Água , Zinco/análiseRESUMO
Peatlands are long-term sinks of carbon (C) and nitrogen (N) that are exposed to anthropogenic pressure. This has often induced a vegetation shift from peat mosses towards increasing presence of vascular plants. However, the impact of this vegetation shift on the sink function of peatlands remains unclear. To address this research gap, we studied C and N accumulation in a Patagonian cushion bog where a shift to the predominance of vascular cushion plants is a natural phenomenon since millennia. For comparison, long-term accumulation and decomposition patterns in a pristine Patagonian Sphagnum bog were studied. Thereto, we determined recent and long-term rates of C and N accumulation, their within-site variability, and studied plant-macrofossils. These results were related to decomposition indicators (C/N ratio, humification index, stable isotopes) of the bog types. Despite differences in decomposition indicators, long-term rates of C accumulation were of similar magnitude in the Sphagnum (21.9 g C m-2 yr-1) and in the cushion bog (22.2 g C m-2 yr-1). N accumulation was significantly lower in the Sphagnum bog (0.35 g N m-2 yr-1) compared to the surprisingly high accumulation in the cushion bog (0.55 g N m-2 yr-1). Tephra depositions in the cushion bog about 1600 cal. Years ago presumably triggered the vegetation shift towards dominance of cushion plants by a fertilization effect. C accumulation rates during past decades in the upper decimeters of peat were four times higher in the cushion bog (245 g C m-2 yr-1) compared to the Sphagnum bog (64 g C m-2 yr-1), but substantially decreased since the appearance of cushion plants. High decomposition rates as indicated by decomposition indicators thus apparently offset the higher productivity of cushion plants in the long term. While cushion bogs appear to be effective N sinks, their C sink function may therefore be equal to Sphagnum bogs.
Assuntos
Sphagnopsida , Áreas Alagadas , Efeitos Antropogênicos , Carbono , Nitrogênio , SoloRESUMO
In the time of the global climate crisis, it is vital to protect and restore peatlands to maintain their functioning as carbon sinks. Otherwise, their transformations may trigger a shift to a carbon source state and further contribute to global warming. In this study, we focused on eutrophication, which resulted in the transition from rich fen to poor fen conditions on the Kazanie fen (central Greater Poland, western Poland Central Europe). The prior aim was to decipher how i) climate, ii) human, and iii) autogenic processes influenced the pathway of peatland changes in the last ca. 250 years. We applied a high-resolution palaeoecological analysis, based mainly on testate amoebae (TA) and plant macroremains. Our results imply that before ca. 1950 CE, dry shifts on the fen were generally climate-induced. Later, autogenic processes, human pressure and climate warming synergistically affected the fen, contributing to its transition to poor fen within ca. 30 years. Its establishment not only caused changes in vegetation but also altered TA taxonomic content and resulted in a lower diversity of TA. According to our research Microchlamyspatella is an incredibly sensitive testate amoeba that after ca. 200 years of presence, disappeared within 2 years due to changes in water and nutrient conditions. As a whole, our study provides a long-term background that is desired in modern conservation studies and might be used to define future restoration targets. It also confirms the already described negative consequences connected with unsustainable exploitation of nature.
Assuntos
Amoeba , Áreas Alagadas , Aquecimento Global , Humanos , Concentração de Íons de Hidrogênio , PolôniaRESUMO
Peatlands cover a small portion of the Earth's land surface but hold ~30% of soil carbon (C) globally. However, few studies have focused on the early stage of peatland development, which is a key stage in the initial C sink function of peatlands. An immature peatland is vulnerable to changes in environmental conditions, e.g., temperature and water conditions, as the peat accumulation process can be easily interrupted by such changes. It is important to understand how immature peatlands develop, what conditions are beneficial to this process, and the present status of these important peatlands. Plant macrofossil analysis and geochemical characteristics of peat were used to determine the plant succession and the degree of decomposition at two peatlands developing in the Changbai Mountain region of northeastern China. The results show that during the entire plant community succession, plants in the two studied peatlands are mainly characterized by sedges (Cyperaceae) and mosses (mainly Sphagnum). Plant macrofossil analysis reveals a wetter trend in the Yuan Lake (YL) peatland in the most upper part of peat layer, which provides favorable conditions for peat accumulation and peatland development. The C/N ratios of core Chi Lake (CL) show a steady peat decomposition and accumulation process in the CL peatland. Additionally, there was a clear impact of presence of Sphagnum on the variations in the C/N ratio. In the YL peatland, macro-charcoal pieces indicated that fire events during dry hydrological conditions had great effects on biogeochemical processes within the peatland, affecting peat decomposition and the succession of the local plant community. An increase in major and trace elements suggests only weak disturbance due to the considerable distance to human settlements. This study determines the characteristics of pristine mountainous peatlands and highlights the importance of understanding the regular plant community in the early stage of peatland formation, as well as its potential effects on C sinks.
Assuntos
Mudança Climática , Sphagnopsida , China , Humanos , Plantas , SoloRESUMO
During European states' development, various past societies utilized natural resources, but their impact was not uniformly spatially and temporally distributed. Considerable changes resulted in landscape fragmentation, especially during the Middle Ages. Changes in state advances that affected the local economy significantly drove trajectories of ecosystems' development. The legacy of major changes from pristine forest to farming is visible in natural archives as novel ecosystems. Here, we present a high-resolution densely dated multi-proxy study covering the last 1500 years from a peatland located in CE Europe. The economic activity of medieval societies was highly modified by new rulers-the Joannites (the Order of St. John of Jerusalem, Knights Hospitaller). We studied the record of these directorial changes noted in the peat profile. Our research revealed a rapid critical land-use transition in the late Middle Ages and its consequences on the peatland ecosystem. The shift from the virgin forest with regular local fires to agriculture correlates well with the raising of local economy and deforestations. Along with the emerging openness, the wetland switched from alkaline wet fen state to acidic, drier Sphagnum-dominated peatland. Our data show how closely the ecological state of wetlands relates to forest microclimate. We identified a significant impact of the Joannites who used the novel farming organization. Our results revealed the surprisingly fast rate of how feudal economy eliminated pristine nature from the studied area and created novel anthroecosystems.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Peat carbon accumulation is controlled by both large scale factors, such as climate and hydrological setting, and small scale factors, such as microtopography and plant community. These small scale factors commonly vary within peatlands and can cause variation in biogeochemical traits and carbon accumulation within the same site. To understand these within-site variations, we investigated long term carbon accumulation, peat decomposition, biogeochemistry of pore water and plant macrofossils along a transect in an ombrotrophic bog in southern Patagonia. An additional question we addressed is how historical deposition of volcanic ash on the peatland has affected its carbon balance. Variability in plant community and water table led to differences in long term peat and carbon accumulation (peat mossâ¯>â¯cushion plant), organic matter decomposition (cushion plantâ¯>â¯peat moss), and methane production (peat mossâ¯>â¯cushion plant). Macrofossil analysis and radiocarbon dating indicated a relationship between plant community and carbon accumulation or decomposition during the historical succession of vegetation in the peatland. C/N ratio and isotopic signatures reflected variability in plant community as litter source, and DOC concentrations were controlled by humification level. Volcanic ash deposition had only limited effect on plant composition, but it was associated with increased decomposition in overlying peat layers. This study highlights the importance of understanding how plant communities develop, as changes in communities could significantly affect the potential of ombrotrophic peatlands as C sink.
Assuntos
Biota/fisiologia , Carbono/metabolismo , Plantas/metabolismo , Áreas Alagadas , ArgentinaRESUMO
The forcing mechanisms responsible for centennial to millennial variability of mid-latitude storminess are still poorly understood. On decadal scales, the present-day geographic variability of North-Atlantic storminess responds to latitudinal shifts of the North-Atlantic westerly wind-belt under the prime control of the North-Atlantic Oscillation (NAO). An equivalent mechanism operating at centennial to millennial time scales during the Holocene is still to be ascertained, especially owing to the lack of high-resolution and continuous records of past-storminess extending far enough in time. Here we present a reconstruction of past storminess activity based on a high-resolution record of wind-blown sand retrieved from a near-coastal wetland. Our record extends back to ca. 10,000 B.P. and allows to continuously document fluctuations in the frequency of Holocene storm-force winds at our study-site at a mean high temporal resolution of 40 years. Large similarities between our record and palaeo-oceanographic records of Holocene climate changes in the North-Atlantic suggest that our past-storminess record reproduces a signal of significance for the North-Eastern Atlantic realm. We find that Holocene North-Atlantic storminess is dominated by robust millennial (≈2,500-year) to centennial (≈400 and 200-year) periodicities. These changes in storminess were accompanied by changes in the precipitation regimes over northern Europe, evidencing large-scale shifts in the latitudinal positions of the Atlantic westerlies akin to present-day NAO patterns. We propose that these shifts originate from changes in the position and extent of the Azores high-pressure system and Polar vortex, as supported by climate model simulations. Finally, we demonstrate that enhanced zonal storminess activity over the North-Atlantic was the driver of centennial-scale changes in North-Atlantic oceanic circulation, while ocean dynamics most likely influenced back the atmospheric circulation at millennial time-scales. This may vouch for the instrumental role played by North-Atlantic storminess in triggering abrupt climate change at centennial scales during the Holocene.
RESUMO
Mountainous peatlands of Western Sudetes are considered a unique habitat in Central Europe. The region contains one of the largest raised bog complexes in temperate Europe and is thus of great importance for biodiversity conservation. In this first high-resolution study from this region we use long-term ecological data to assess how these mountain wetland ecosystems responded to anthropogenic impacts and climate change. We used testate amoebae morphological traits, micro- and macroscopic charcoal, pollen and plant macrofossils to reconstruct the history of peatland development over 800 years, illustrating shifts in its development and fire dynamics. Five hydrological stages of peatland development were recognized. Testate amoebae morphological traits reflected several abrupt ecological changes linked to anthropogenic modifications of landscape openness. A shift towards mixotrophic taxa, linked to hydrological change or shrubs expansion and shading, preceded aperture position change, which was associated to dust input through surrounding deforestation and simultaneous water-table increase. Fire reconstruction revealed increasing burning together with intensifying human activity, including the expansion of a nearby settlement. This study confirms the potential of testate amoeba communities and the use of morpho-functional traits as indicators of ecological effects of land-use change over long-temporal scales.
Assuntos
Amoeba , Ecossistema , Fósseis , Solo/parasitologia , Áreas Alagadas , Carvão Vegetal/análise , Incêndios , Hidrologia , PolôniaRESUMO
Species' functional traits are closely related to ecosystem processes through evolutionary adaptation, and are thus directly connected to environmental changes. Species' traits are not commonly used in palaeoecology, even though they offer powerful advantages in understanding the impact of environmental disturbances in a mechanistic way over time. Here we show that functional traits of testate amoebae (TA), a common group of palaeoecological indicators, can serve as an early warning signal of ecosystem disturbance and help determine thresholds of ecosystem resilience to disturbances in peatlands. We analysed TA traits from two Sphagnum-dominated mires, which had experienced different kinds of disturbances in the past 2000 years - fire and peat extraction, respectively. We tested the effect of disturbances on the linkages between TA community structure, functional trait composition and functional diversity using structural equation modelling. We found that traits such as mixotrophy and small hidden apertures (plagiostomic apertures) are strongly connected with disturbance, suggesting that these two traits can be used as palaeoecological proxies of peatland disturbance. We show that TA functional traits may serve as a good proxy of past environmental changes, and further analysis of trait-ecosystem relationships could make them valuable indicators of the contemporary ecosystem state.