RESUMO
The recent development of porcine induced pluripotent stem cells (piPSCs) capable of generating chimeric animals, a feat not previously accomplished with embryonic stem cells or iPSCs in a species outside of rodents, has opened the doors for in-depth study of iPSC tumorigenicity, autologous transplantation, and other key aspects to safely move iPSC therapies to the clinic. The study of iPSC tumorigenicity is critical as previous research in the mouse showed that iPSC-derived chimeras possessed large numbers of tumors, rising significant concerns about the safety of iPSC therapies. Additionally, piPSCs capable of generating germline chimeras could revolutionize the transgenic animal field by enabling complex genetic manipulations (e.g., knockout or knockin of genes) to produce biomedically important large animal models or improve livestock production. In this study, we demonstrate for the first time in a nonrodent species germline transmission of iPSCs with the live birth of a transgenic piglet that possessed genome integration of the human POU5F1 and NANOG genes. In addition, gross and histological examination of necropsied porcine chimeras at 2, 7, and 9 months showed that these animals lacked tumor formation and demonstrated normal development. Tissue samples positive for human POU5F1 DNA showed no C-MYC gene expression, further implicating C-MYC as a cause of tumorigenicity. The development of germline-competent porcine iPSCs that do not produce tumors in young chimeric animals presents an attractive and powerful translational model to study the efficacy and safety of stem cell therapies and perhaps to efficiently produce complex transgenic animals.
Assuntos
Quimera/genética , Células Germinativas/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica/genética , Quimera/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Análise de Sequência de DNA , SuínosRESUMO
The pig is the large animal model of choice for study of nerve regeneration and wound repair. Availability of porcine sensory neural cells would conceptually allow for analogous cell-based peripheral nerve regeneration in porcine injuries of similar severity and size to those found in humans. After recently reporting that porcine (or pig) induced pluripotent stem cells (piPSCs) differentiate into neural rosette (NR) structures similar to human NRs, here we demonstrate that pig NR cells could differentiate into neural crest cells and other peripheral nervous system-relevant cell types. Treatment with either bone morphogenetic protein 4 or fetal bovine serum led to differentiation into BRN3A-positive sensory cells and increased expression of sensory neuron TRK receptor gene family: TRKA, TRKB, and TRKC. Porcine sensory neural cells would allow determination of parallels between human and porcine cells in response to noxious stimuli, analgesics, and reparative mechanisms. In vitro differentiation of pig sensory neurons provides a novel model system for neural cell subtype specification and would provide a novel platform for the study of regenerative therapeutics by elucidating the requirements for innervation following injury and axonal survival.
Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Formação de Roseta , Células Receptoras Sensoriais/citologia , Animais , Biomarcadores , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Neurais/fisiologia , Células Receptoras Sensoriais/fisiologia , SuínosRESUMO
For diseases of the brain, the pig (Sus scrofa) is increasingly being used as a model organism that shares many anatomical and biological similarities with humans. We report that pig induced pluripotent stem cells (iPSC) can recapitulate events in early mammalian neural development. Pig iPSC line (POU5F1(high)/SSEA4(low)) had a higher potential to form neural rosettes (NR) containing neuroepithelial cells than either POU5F1(low)/SSEA4(low) or POU5F1(low)/SSEA4(high) lines. Thus, POU5F1 and SSEA4 pluripotency marker profiles in starting porcine iPSC populations can predict their propensity to form more robust NR populations in culture. The NR were isolated and expanded in vitro, retaining their NR morphology and neuroepithelial molecular properties. These cells expressed anterior central nervous system fate markers OTX2 and GBX2 through at least seven passages, and responded to retinoic acid, promoting a more posterior fate (HOXB4+, OTX2-, and GBX2-). These findings offer insight into pig iPSC development, which parallels the human iPSC in both anterior and posterior neural cell fates. These in vitro similarities in early neural differentiation processes support the use of pig iPSC and differentiated neural cells as a cell therapy in allogeneic porcine neural injury and degeneration models, providing relevant translational data for eventual human neural cell therapies.
Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Células Cultivadas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Formação de Roseta , Especificidade da Espécie , Antígenos Embrionários Estágio-Específicos/genética , Antígenos Embrionários Estágio-Específicos/metabolismo , SuínosRESUMO
Avian species are important model animals for developmental biology and disease research. However, unlike in mice, where clonal lines of pluripotent stem cells have enabled researchers to study mammalian gene function, clonal and highly proliferative pluripotent avian cell lines have been an elusive goal. Here we demonstrate the generation of avian induced pluripotent stem cells (iPSCs), the first nonmammalian iPSCs, which were clonally isolated and propagated, important attributes not attained in embryo-sourced avian cells. This was accomplished using human pluripotency genes rather than avian genes, indicating that the process in which mammalian and nonmammalian cells are reprogrammed is a conserved process. Quail iPSCs (qiPSCs) were capable of forming all 3 germ layers in vitro and were directly differentiated in culture into astrocytes, oligodendrocytes, and neurons. Ultimately, qiPSCs were capable of generating live chimeric birds and incorporated into tissues from all 3 germ layers, extraembryonic tissues, and potentially the germline. These chimera competent qiPSCs and in vitro differentiated cells offer insight into the conserved nature of reprogramming and genetic tools that were only previously available in mammals.
Assuntos
Técnicas de Cultura de Células/métodos , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Codorniz/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular , Proliferação de Células , Embrião de Galinha , Quimera , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Fibroblastos/citologia , Fibroblastos/metabolismo , Genoma Humano , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Codorniz/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Telomerase/metabolismo , Transdução GenéticaRESUMO
Early germ-like cells (GLCs) derived from human embryonic stem cells (hESCs) have presented new opportunities to study germ cell differentiation in vitro. However, differentiation conditions that facilitate the formation of haploid cells from the derived GLCs have eluded the field. The inability to propagate GLCs in culture is a further limitation, resulting in inconsistent rederivations of GLCs from hESCs with relatively few GLCs in these heterogeneous populations. Here we found in vitro conditions that enrich for DDX4/POU5F1+ GLCs (â¼60%) and that has enabled continual propagation for >50 passages without loss of phenotype. Clonal isolation of single GLCs from these mixed cultures generated 3 GLC (>90% DDX4/POU5F1+) and 2 hESC (<0.1% DDX4+) lines that could be continually expanded without loss of phenotype. Differentiation of clonal GLC lines in serum resulted in expression of postmeiotic markers and >11% were haploid, â¼5-fold higher than previous studies. The robust clonal meiotic competent and incompetent GLC lines will be used to understand the factors controlling human germ cell meiosis and postmeiotic maturation.