RESUMO
Leaf litter decomposition is a major carbon input to soil, making it a target for increasing soil carbon storage through microbiome engineering. We expand upon previous findings to show with multiple leaf litter types that microbial composition can drive variation in carbon flow from litter decomposition and specific microbial community features are associated with synonymous patterns of carbon flow among litter types. Although plant litter type selects for different decomposer communities, within a litter type, microbial composition drives variation in the quantity of dissolved organic carbon (DOC) measured at the end of the decomposition period. Bacterial richness was negatively correlated with DOC quantity, supporting our hypothesis that across multiple litter types there are common microbial traits linked to carbon flow patterns. Variation in DOC abundance (i.e. high versus low DOC) driven by microbial composition is tentatively due to differences in bacterial metabolism of labile compounds, rather than catabolism of non-labile substrates such as lignin. The temporal asynchrony of metabolic processes across litter types may be a substantial impediment to discovering more microbial features common to synonymous patterns of carbon flow among litters. Overall, our findings support the concept that carbon flow may be programmed by manipulating microbial community composition.
Assuntos
Microbiota , Microbiologia do Solo , Carbono , Ciclo do Carbono , Ecossistema , Folhas de Planta , Solo/químicaRESUMO
Integrated measurements of fungi and bacteria are critical to understand how interactions between these taxa drive key processes in ecosystems ranging from soils to animal guts. High-throughput amplicon sequencing is commonly used to census microbiomes, but the genetic markers targeted for fungi and bacteria (typically ribosomal regions) are domain-specific so profiling must be performed separately, obscuring relationships between these groups. To solve this problem, we developed a spike-in method with an internal control (IC) construct containing primer sites commonly used for bacterial and fungal taxonomic profiling. The internal control offers several advantages: estimation of absolute abundances, estimation of fungal to bacterial ratios (F:B), integration of bacterial and fungal profiles for holistic community analysis, and lower costs compared to other quantitation methods. To validate the IC as a scaling method, we compared IC-derived measures of F:B to measures from quantitative PCR (qPCR) using a commercial mock community (the ZymoBiomic Microbial Community DNA Standard II, containing two fungi and eight bacteria) and complex environmental samples. For both the mock community and the environmental samples, the IC produced F:B values that were statistically consistent with qPCR. Merging the environmental fungal and bacterial profiles based on the IC-derived F:B values revealed new relationships among samples in terms of community similarity. This IC method is the first spike-in method to employ a single construct for cross-domain amplicon sequencing, offering more reliable measurements.
Assuntos
Fungos , Microbiota , Bactérias/genética , DNA Fúngico/genética , Fungos/genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
BACKGROUND: The dominant fungi in arid grasslands and shrublands are members of the Ascomycota phylum. Ascomycota fungi are important drivers in carbon and nitrogen cycling in arid ecosystems. These fungi play roles in soil stability, plant biomass decomposition, and endophytic interactions with plants. They may also form symbiotic associations with biocrust components or be latent saprotrophs or pathogens that live on plant tissues. However, their functional potential in arid soils, where organic matter, nutrients and water are very low or only periodically available, is poorly characterized. RESULTS: Five Ascomycota fungi were isolated from different soil crust microhabitats and rhizosphere soils around the native bunchgrass Pleuraphis jamesii in an arid grassland near Moab, UT, USA. Putative genera were Coniochaeta, isolated from lichen biocrust, Embellisia from cyanobacteria biocrust, Chaetomium from below lichen biocrust, Phoma from a moss microhabitat, and Aspergillus from the soil. The fungi were grown in replicate cultures on different carbon sources (chitin, native bunchgrass or pine wood) relevant to plant biomass and soil carbon sources. Secretomes produced by the fungi on each substrate were characterized. Results demonstrate that these fungi likely interact with primary producers (biocrust or plants) by secreting a wide range of proteins that facilitate symbiotic associations. Each of the fungal isolates secreted enzymes that degrade plant biomass, small secreted effector proteins, and proteins involved in either beneficial plant interactions or virulence. Aspergillus and Phoma expressed more plant biomass degrading enzymes when grown in grass- and pine-containing cultures than in chitin. Coniochaeta and Embellisia expressed similar numbers of these enzymes under all conditions, while Chaetomium secreted more of these enzymes in grass-containing cultures. CONCLUSIONS: This study of Ascomycota genomes and secretomes provides important insights about the lifestyles and the roles that Ascomycota fungi likely play in arid grassland, ecosystems. However, the exact nature of those interactions, whether any or all of the isolates are true endophytes, latent saprotrophs or opportunistic phytopathogens, will be the topic of future studies.
Assuntos
Ascomicetos/classificação , Proteínas Fúngicas/metabolismo , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Biomassa , Endófitos , Proteínas Fúngicas/genética , Genoma Fúngico , Filogenia , Proteômica , Microbiologia do Solo , Sequenciamento Completo do GenomaRESUMO
The study of microbial community functions necessitates replicating microbial communities. Variation in community development over time renders this an imperfect process. Thus, anticipating the likely degree of variation among replicate communities may aid in experimental design. We examined divergence in replicate community composition and function among 128 naturally assembled starting communities obtained from soils, each replicated three times, following a 30-day microcosm incubation period. Bacterial and fungal communities diverged in both composition and function among replicates, but remained much more similar to each other than to communities from different starting inocula. Variation in bacterial community composition among replicates was, however, correlated with variation in dissolved organic carbon production. A smaller-scale experiment testing nine starting communities showed that divergence was similar whether replicates were incubated on sterile or non-sterile pine litter, suggesting the impact of a pre-existing community on replicate divergence is minor. However, replicates in this experiment which were incubated for 114 days diverged more than those incubated for 30 days, suggesting experiments that run over long time periods will likely see greater variation among replicate community composition. These results suggest that while replicates diverge at a community level, such divergence is unlikely to severely impede the study of community function.
Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Fungos/classificação , Microbiota , Microbiologia do Solo , MicobiomaRESUMO
Numerous studies have examined the long-term effect of experimental nitrogen (N) deposition in terrestrial ecosystems; however, N-specific mechanistic markers are difficult to disentangle from responses to other environmental changes. The strongest picture of N-responsive mechanistic markers is likely to arise from measurements over a short (hours to days) time scale immediately after inorganic N deposition. Therefore, we assessed the short-term (3-day) transcriptional response of microbial communities in two soil strata from a pine forest to a high dose of N fertilization (ca. 1 mg/g of soil material) in laboratory microcosms. We hypothesized that N fertilization would repress the expression of fungal and bacterial genes linked to N mining from plant litter. However, despite N suppression of microbial respiration, the most pronounced differences in functional gene expression were between strata rather than in response to the N addition. Overall, â¼4% of metabolic genes changed in expression with N addition, while three times as many (â¼12%) were significantly different across the different soil strata in the microcosms. In particular, we found little evidence of N changing expression levels of metabolic genes associated with complex carbohydrate degradation (CAZymes) or inorganic N utilization. This suggests that direct N repression of microbial functional gene expression is not the principle mechanism for reduced soil respiration immediately after N deposition. Instead, changes in expression with N addition occurred primarily in general cell maintenance areas, for example, in ribosome-related transcripts. Transcriptional changes in functional gene abundance in response to N addition observed in longer-term field studies likely result from changes in microbial composition.IMPORTANCE Ecosystems are receiving increased nitrogen (N) from anthropogenic sources, including fertilizers and emissions from factories and automobiles. High levels of N change ecosystem functioning. For example, high inorganic N decreases the microbial decomposition of plant litter, potentially reducing nutrient recycling for plant growth. Understanding how N regulates microbial decomposition can improve the prediction of ecosystem functioning over extended time scales. We found little support for the conventional view that high N supply represses the expression of genes involved in decomposition or alters the expression of bacterial genes for inorganic N cycling. Instead, our study of pine forest soil 3 days after N addition showed changes in microbial gene expression related to cell maintenance and stress response. This highlights the challenge of establishing predictive links between microbial gene expression levels and measures of ecosystem function.
Assuntos
Bactérias/genética , Fungos/genética , Microbiota , Pinus/crescimento & desenvolvimento , Microbiologia do Solo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ecossistema , Fertilizantes/análise , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Nitrogênio/metabolismo , Solo/química , Transcrição GênicaRESUMO
Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biological soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.
Assuntos
Pradaria , Nitrogênio/metabolismo , Microbiologia do Solo , Archaea , Biomassa , Colorado , Ecossistema , Fungos/metabolismo , Plantas/metabolismo , Rizosfera , Solo/químicaRESUMO
The use of rRNA/DNA ratios derived from surveys of rRNA sequences in RNA and DNA extracts is an appealing but poorly validated approach to infer the activity status of environmental microbes. To improve the interpretation of rRNA/DNA ratios, we performed simulations to investigate the effects of community structure, rRNA amplification, and sampling depth on the accuracy of rRNA/DNA ratios in classifying bacterial populations as "active" or "dormant." Community structure was an insignificant factor. In contrast, the extent of rRNA amplification that occurs as cells transition from dormant to growing had a significant effect (P < 0.0001) on classification accuracy, with misclassification errors ranging from 16 to 28%, depending on the rRNA amplification model. The error rate increased to 47% when communities included a mixture of rRNA amplification models, but most of the inflated error was false negatives (i.e., active populations misclassified as dormant). Sampling depth also affected error rates (P < 0.001). Inadequate sampling depth produced various artifacts that are characteristic of rRNA/DNA ratios generated from real communities. These data show important constraints on the use of rRNA/DNA ratios to infer activity status. Whereas classification of populations as active based on rRNA/DNA ratios appears generally valid, classification of populations as dormant is potentially far less accurate.IMPORTANCE The rRNA/DNA ratio approach is appealing because it extracts an extra layer of information from high-throughput DNA sequencing data, offering a means to determine not only the seedbank of taxa present in communities but also the subset of taxa that are metabolically active. This study provides crucial insights into the use of rRNA/DNA ratios to infer the activity status of microbial taxa in complex communities. Our study shows that the approach may not be as robust as previously supposed, particularly in complex communities composed of populations employing different growth strategies, and identifies factors that inflate the erroneous classification of active populations as dormant.
Assuntos
Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , RNA Ribossômico/genética , Bactérias/classificação , DNA Bacteriano/química , RNA Ribossômico/químicaRESUMO
Francisella tularensis is a highly virulent zoonotic pathogen that causes tularemia and, because of weaponization efforts in past world wars, is considered a tier 1 biothreat agent. Detection and surveillance of F. tularensis may be confounded by the presence of uncharacterized, closely related organisms. Through DNA-based diagnostics and environmental surveys, novel clinical and environmental Francisella isolates have been obtained in recent years. Here we present 7 new Francisella genomes and a comparison of their characteristics to each other and to 24 publicly available genomes as well as a comparative analysis of 16S rRNA and sdhA genes from over 90 Francisella strains. Delineation of new species in bacteria is challenging, especially when isolates having very close genomic characteristics exhibit different physiological features-for example, when some are virulent pathogens in humans and animals while others are nonpathogenic or are opportunistic pathogens. Species resolution within Francisella varies with analyses of single genes, multiple gene or protein sets, or whole-genome comparisons of nucleic acid and amino acid sequences. Analyses focusing on single genes (16S rRNA, sdhA), multiple gene sets (virulence genes, lipopolysaccharide [LPS] biosynthesis genes, pathogenicity island), and whole-genome comparisons (nucleotide and protein) gave congruent results, but with different levels of discrimination confidence. We designate four new species within the genus; Francisella opportunistica sp. nov. (MA06-7296), Francisella salina sp. nov. (TX07-7308), Francisella uliginis sp. nov. (TX07-7310), and Francisella frigiditurris sp. nov. (CA97-1460). This study provides a robust comparative framework to discern species and virulence features of newly detected Francisella bacteria. IMPORTANCE: DNA-based detection and sequencing methods have identified thousands of new bacteria in the human body and the environment. In most cases, there are no cultured isolates that correspond to these sequences. While DNA-based approaches are highly sensitive, accurately assigning species is difficult without known near relatives for comparison. This ambiguity poses challenges for clinical cases, disease epidemics, and environmental surveillance, for which response times must be short. Many new Francisella isolates have been identified globally. However, their species designations and potential for causing human disease remain ambiguous. Through detailed genome comparisons, we identified features that differentiate F. tularensis from clinical and environmental Francisella isolates and provide a knowledge base for future comparison of Francisella organisms identified in clinical samples or environmental surveys.
Assuntos
Proteínas de Bactérias/genética , Flavoproteínas/genética , Francisella/classificação , Francisella/genética , Variação Genética , Genoma Bacteriano , DNA Bacteriano/genética , Francisella/patogenicidade , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , VirulênciaRESUMO
Among the bacteria, members of the order Actinomycetales are considered quintessential degraders of complex polysaccharides in soils. However, studies examining complex polysaccharide degradation by Actinomycetales (other than Streptomyces spp.) in soils are limited. Here, we examine the lignocellulolytic and chitinolytic potential of 112 Actinomycetales strains, encompassing 13 families, isolated from a semiarid grassland of the Colorado Plateau in Utah. Members of the Streptomycetaceae, Pseudonocardiaceae, Micromonosporaceae, and Promicromonosporaceae families exhibited robust activity against carboxymethyl cellulose, xylan, chitin, and pectin substrates (except for low/no pectinase activity by the Micromonosporaceae). When incubated in a hydrated mixture of blended Stipa and Hilaria grass biomass over a 5-week period, Streptomyces and Saccharothrix (a member of the Pseudonocardiaceae) isolates produced high levels of extracellular enzyme activity, such as endo- and exocellulase, glucosidase, endo- and exoxylosidase, and arabinofuranosidase. These characteristics make them well suited to degrade the cellulose and hemicellulose components of grass cell walls. On the basis of the polysaccharide degradation profiles of the isolates, relative abundance of Actinomycetales sequences in 16S rRNA gene surveys of Colorado Plateau soils, and analysis of genes coding for polysaccharide-degrading enzymes among 237 Actinomycetales genomes in the CAZy database and 5 genomes from our isolates, we posit that Streptomyces spp. and select members of the Pseudonocardiaceae and Micromonosporaceae likely play an important role in the degradation of hemicellulose, cellulose, and chitin substances in dryland soils.IMPORTANCE Shifts in the relative abundance of Actinomycetales taxa have been observed in soil microbial community surveys during large, manipulated climate change field studies. However, our limited understanding of the ecophysiology of diverse Actinomycetales taxa in soil systems undermines attempts to determine the underlying causes of the population shifts or their impact on carbon cycling in soil. This study combines a systematic analysis of the polysaccharide degradation potential of a diverse collection of Actinomycetales isolates from surface soils of a semiarid grassland with analysis of genomes from five of these isolates and publicly available Actinomycetales genomes for genes encoding polysaccharide-active enzymes. The results address an important gap in knowledge of Actinomycetales ecophysiology-identification of key taxa capable of facilitating lignocellulose degradation in dryland soils. Information from this study will benefit future metagenomic studies related to carbon cycling in dryland soils by providing a baseline linkage of Actinomycetales phylogeny with lignocellulolytic functional potential.
Assuntos
Actinomycetales/metabolismo , Carboximetilcelulose Sódica/metabolismo , Quitina/metabolismo , Lignina/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo , Xilanos/metabolismo , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Mudança Climática , Colorado , Pradaria , Filogenia , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do SoloRESUMO
Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.
Assuntos
Biota , Mudança Climática , Pressão Hidrostática , Microbiologia do Solo , Biomassa , Chuva , TemperaturaRESUMO
Soil fungal communities are likely to be central in mediating microbial feedbacks to climate change through their effects on soil carbon (C) storage, nutrient cycling, and plant health. Plants often produce increased fine root biomass in response to elevated atmospheric carbon dioxide (CO2 ), but the responses of soil microbial communities are variable and uncertain, particularly in terms of species diversity. In this study, we describe the responses of the soil fungal community to free air CO2 enrichment (FACE) in a semiarid chaparral shrubland in Southern California (dominated by Adenomstoma fasciculatum) using large subunit rRNA gene sequencing. Community composition varied greatly over the landscape and responses to FACE were subtle, involving a few specific groups. Increased frequency of Sordariomycetes and Leotiomycetes, the latter including the Helotiales, a group that includes many dark septate endophytes known to associate positively with roots, was observed in the FACE plots. Fungal diversity, both in terms of richness and evenness, increased consistently in the FACE treatment, and was relatively high compared to other studies that used similar methods. Increases in diversity were observed across multiple phylogenetic levels, from genus to class, and were distributed broadly across fungal lineages. Diversity was also higher in samples collected close to (5 cm) plants compared to samples in canopy gaps (30 cm away from plants). Fungal biomass correlated well with soil organic matter (SOM) content, but patterns of diversity were correlated with fine root production rather than SOM. We conclude that the fungal community in this ecosystem is tightly linked to plant fine root production, and that future changes in the fungal community in response to elevated CO2 and other climatic changes will be primarily driven by changes in plant belowground allocation. Potential feedbacks mediated by soil fungi, such as soil C sequestration, nutrient cycling, and pathogenesis, are discussed.
Assuntos
Dióxido de Carbono/farmacologia , Fungos/classificação , Raízes de Plantas/crescimento & desenvolvimento , Microbiologia do Solo , Atmosfera , Biodiversidade , California , DNA Fúngico/genética , Ecossistema , Fungos/genética , Fungos/isolamento & purificação , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética , Análise de Sequência de DNARESUMO
Environmental biosurveillance and microbial ecology studies use PCR-based assays to detect and quantify microbial taxa and gene sequences within a complex background of microorganisms. However, the fragmentary nature and growing quantity of DNA-sequence data make group-specific assay design challenging. We solved this problem by developing a software platform that enables PCR-assay design at an unprecedented scale. As a demonstration, we developed quantitative PCR assays for a globally widespread, ecologically important bacterial group in soil, Acidobacteria Group 1. A total of 33,684 Acidobacteria 16S rRNA gene sequences were used for assay design. Following 1 week of computation on a 376-core cluster, 83 assays were obtained. We validated the specificity of the top three assays, collectively predicted to detect 42% of the Acidobacteria Group 1 sequences, by PCR amplification and sequencing of DNA from soil. Based on previous analyses of 16S rRNA gene sequencing, Acidobacteria Group 1 species were expected to decrease in response to elevated atmospheric CO(2). Quantitative PCR results, using the Acidobacteria Group 1-specific PCR assays, confirmed the expected decrease and provided higher statistical confidence than the 16S rRNA gene-sequencing data. These results demonstrate a powerful capacity to address previously intractable assay design challenges.
Assuntos
Acidobacteria/isolamento & purificação , Primers do DNA/química , Reação em Cadeia da Polimerase/métodos , Software , Microbiologia do Solo , Acidobacteria/genética , Algoritmos , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Biotic factors that influence the temporal stability of microbial community functioning are an emerging research focus for the control of natural and engineered systems. The discovery of common features within community ensembles that differ in functional stability over time is a starting point to explore biotic factors. We serially propagated a suite of soil microbial communities through five generations of 28-day microcosm incubations to examine microbial community compositional and functional stability during plant litter decomposition. Using dissolved organic carbon (DOC) abundance as a target function, we hypothesized that microbial diversity, compositional stability, and associated changes in interactions would explain the relative stability of the ecosystem function between generations. Communities with initially high DOC abundance tended to converge towards a "low DOC" phenotype within two generations, but across all microcosms, functional stability between generations was highly variable. By splitting communities into two cohorts based on their relative DOC functional stability, we found that compositional shifts, diversity, and interaction network complexity were associated with the stability of DOC abundance between generations. Further, our results showed that legacy effects were important in determining compositional and functional outcomes, and we identified taxa associated with high DOC abundance. In the context of litter decomposition, achieving functionally stable communities is required to utilize soil microbiomes to increase DOC abundance and long-term terrestrial DOC sequestration as one solution to reduce atmospheric carbon dioxide concentrations. Identifying factors that stabilize function for a community of interest may improve the success of microbiome engineering applications. IMPORTANCE Microbial community functioning can be highly dynamic over time. Identifying and understanding biotic factors that control functional stability is of significant interest for natural and engineered communities alike. Using plant litter-decomposing communities as a model system, this study examined the stability of ecosystem function over time following repeated community transfers. By identifying microbial community features that are associated with stable ecosystem functions, microbial communities can be manipulated in ways that promote the consistency and reliability of the desired function, improving outcomes and increasing the utility of microorganisms.
Assuntos
Microbiota , Microbiologia do Solo , Reprodutibilidade dos Testes , Microbiota/genética , Plantas , SoloRESUMO
Members of the fungal genus Morchella are widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained from Morchella isolates grown in vitro. These investigations included diverse representatives from both Elata and Esculenta Morchella clades. Unique bacterial community compositions were observed across the various structures examined, both within and across individual Morchella isolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genus Pseudomonas and Ralstonia constituted the core bacterial associates of Morchella mycelia and sclerotia, while other genera (e.g., Pedobacter spp., Deviosa spp., and Bradyrhizobium spp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance of Pseudomonas as a key member of the bacteriome was supported by the isolation of several Pseudomonas strains from mycelia during in vitro cultivation. Four of the six mycelial-derived Pseudomonas isolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and various Morchella isolates. Genome sequences obtained from these Pseudomonas isolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence that Pseudomonas spp. are frequently associated with Morchella and these associations may greatly impact fungal physiology.
RESUMO
Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.
Assuntos
Adaptação Biológica/genética , Dióxido de Carbono/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Microbiologia do Solo , Biodiversidade , Biomassa , Cianobactérias/genética , Ecossistema , Biblioteca Gênica , Metagenoma , Nevada , Estresse Oxidativo , Estados UnidosRESUMO
Six terrestrial ecosystems in the USA were exposed to elevated atmospheric CO(2) in single or multifactorial experiments for more than a decade to assess potential impacts. We retrospectively assessed soil bacterial community responses in all six-field experiments and found ecosystem-specific and common patterns of soil bacterial community response to elevated CO(2) . Soil bacterial composition differed greatly across the six ecosystems. No common effect of elevated atmospheric CO(2) on bacterial biomass, richness and community composition across all of the ecosystems was identified, although significant responses were detected in individual ecosystems. The most striking common trend across the sites was a decrease of up to 3.5-fold in the relative abundance of Acidobacteria Group 1 bacteria in soils exposed to elevated CO(2) or other climate factors. The Acidobacteria Group 1 response observed in exploratory 16S rRNA gene clone library surveys was validated in one ecosystem by 100-fold deeper sequencing and semi-quantitative PCR assays. Collectively, the 16S rRNA gene sequencing approach revealed influences of elevated CO(2) on multiple ecosystems. Although few common trends across the ecosystems were detected in the small surveys, the trends may be harbingers of more substantive changes in less abundant, more sensitive taxa that can only be detected by deeper surveys. Representative bacterial 16S rRNA gene clone sequences were deposited in GenBank with Accession No. JQ366086JQ387568.
Assuntos
Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Ecossistema , Microbiologia do Solo , Acidobacteria/genética , Bactérias/genética , Biodiversidade , Biomassa , Dióxido de Carbono/análise , Genes de RNAr/genética , Solo/análise , Estados UnidosRESUMO
To date, the potential impact of viral communities on biogeochemical cycles in soil has largely been inferred from correlational evidence, such as virus-driven changes in microbial abundances, viral auxiliary metabolic genes, and links with soil physiochemical properties. To more directly test the impact of soil viruses on carbon cycling during plant litter decomposition, we added concentrated viral community suspensions to complex litter decomposer communities in 40-day microcosm experiments. Microbial communities from two New Mexico alpine soils, Pajarito (PJ) and Santa Fe (SF), were inoculated onto grass litter on sand, and three treatments were applied in triplicate to each set of microcosms: addition of buffer (no added virus), live virus (+virus), or killed-virus (+killed-virus) fractions extracted from the same soil. Significant differences in respiration were observed between the +virus and +killed-virus treatments in the PJ, but not the SF microcosms. Bacterial and fungal community composition differed significantly by treatment in both PJ and SF microcosms. Combining data across both soils, viral addition altered links between bacterial and fungal diversity, dissolved organic carbon and total nitrogen. Overall, we demonstrate that increasing viral pressure in complex microbial communities can impact terrestrial biogeochemical cycling but is context-dependent.
RESUMO
Plant survival during environmental stress greatly affects ecosystem carbon (C) cycling, and plant-microbe interactions are central to plant stress survival. The release of C-rich root exudates is a key mechanism plants use to manage their microbiome, attracting beneficial microbes and/or suppressing harmful microbes to help plants withstand environmental stress. However, a critical knowledge gap is how plants alter root exudate concentration and composition under varying stress levels. In a greenhouse study, we imposed three drought treatments (control, mild, severe) on blue grama (Bouteloua gracilis Kunth Lag. Ex Griffiths), and measured plant physiology and root exudate concentration and composition using GC-MS, NMR, and FTICR. With increasing drought severity, root exudate total C and organic C increased concurrently with declining predawn leaf water potential and photosynthesis. Root exudate composition mirrored the physiological gradient of drought severity treatments. Specific compounds that are known to alter plant drought responses and the rhizosphere microbiome mirrored the drought severity-induced root exudate compositional gradient. Despite reducing C uptake, these plants actively invested C to root exudates with increasing drought severity. Patterns of plant physiology and root exudate concentration and composition co-varied along a gradient of drought severity.
Assuntos
Secas , Microbiota , Exsudatos e Transudatos , Raízes de Plantas/fisiologia , Plantas , Poaceae , RizosferaRESUMO
Dryland ecosystems are sensitive to perturbations and generally slow to recover post disturbance. The microorganisms residing in dryland soils are especially important as they contribute to soil structure and nutrient cycling. Disturbance can have particularly strong effects on dryland soil structure and function, yet the natural resistance and recovery of the microbial components of dryland soils has not been well documented. In this study, the recovery of surface soil bacterial communities from multiple physical and environmental disturbances is assessed. Samples were collected from three field sites in the vicinity of Moab, UT, United States, 6 to 7 years after physical and climate disturbance manipulations had been terminated, allowing for the assessment of community recovery. Additionally, samples were collected in a transect that included three habitat patches: the canopy zone soils under the dominant shrubs, the interspace soils that are colonized by biological soil crusts, and edge soils at the plot borders. Field site and habitat patch were significant factors structuring the bacterial communities, illustrating that sites and habitats harbored unique soil microbiomes. Across the different sites and disturbance treatments, there was evidence of significant bacterial community recovery, as bacterial biomass and diversity were not significantly different than control plots. There was, however, a small number of 16S rRNA gene amplicon sequence variants that distinguished particular treatments, suggesting that legacy effects of the disturbances still remained. Taken together, these data suggest that dryland bacterial communities may possess a previously unappreciated potential to recover within years of the original disturbance.