Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Am Chem Soc ; 146(15): 10537-10549, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38567991

RESUMO

The aberrant aggregation of α-synuclein (αS) into amyloid fibrils is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease. Although the structural properties of mature amyloids of αS are currently understood, the nature of transient protofilaments and fibrils that appear during αS aggregation remains elusive. Using solid-state nuclear magnetic resonance (ssNMR), cryogenic electron microscopy (cryo-EM), and biophysical methods, we here characterized intermediate amyloid fibrils of αS forming during the aggregation from liquid-like spherical condensates to mature amyloids adopting the structure of pathologically observed aggregates. These transient amyloid intermediates, which induce significant levels of cytotoxicity when incubated with neuronal cells, were found to be stabilized by a small core in an antiparallel ß-sheet conformation, with a disordered N-terminal region of the protein remaining available to mediate membrane binding. In contrast, mature amyloids that subsequently appear during the aggregation showed different structural and biological properties, including low levels of cytotoxicity, a rearranged structured core embedding also the N-terminal region, and a reduced propensity to interact with the membrane. The characterization of these two fibrillar forms of αS, and the use of antibodies and designed mutants, enabled us to clarify the role of critical structural elements endowing intermediate amyloid species with the ability to interact with membranes and induce cytotoxicity.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidade , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Amiloide/química , Conformação Proteica em Folha beta
2.
Chemistry ; 30(38): e202401249, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38722210

RESUMO

Several organisms are able to polycondensate tetraoxosilicic(IV) acid to form silicon(IV) dioxide using polycationic molecules. According to an earlier mechanistic proposal, these molecules undergo a phase separation and recent experimental evidence appears to confirm this model. At the same time, polycationic proteins like lysozyme can also promote polycondensation of silicon(IV) dioxide, and they do so under conditions that are not compatible with liquid-liquid phase separation. In this manuscript we investigate this conundrum by molecular simulations.


Assuntos
Muramidase , Dióxido de Silício , Muramidase/química , Muramidase/metabolismo , Dióxido de Silício/química , Simulação de Dinâmica Molecular , Polieletrólitos/química
3.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256258

RESUMO

MIA40 and ALR of the MIA pathway mediate the import of protein precursors that form disulfides into the mitochondrial intermembrane space. This import pathway is suggested to be a linear pathway in which MIA40 first binds to the precursor via a disulfide linkage and oxidizes it. Subsequently, ALR re-oxidizes MIA40 and then ALR transfers electrons to terminal electron acceptors. However, the precise mechanism by which ALR and MIA40 coordinate translocation is unknown. With a collection of small molecule modulators (MB-5 to MB-9 and MB-13) that inhibit ALR activity, we characterized the import mechanism in mitochondria. NMR studies show that most of the compounds bind to a similar region in ALR. Mechanistic studies with small molecules demonstrate that treatment with compound MB-6 locks the precursor in a state bound to MIA40, blocking re-oxidation of MIA40 by ALR. Thus, small molecules that target a similar region in ALR alter the dynamics of the MIA import pathway differently, resulting in a set of probes that are useful for studying the catalysis of the redox-regulated import pathway in model systems.


Assuntos
Dissulfetos , Elétrons , Biblioteca Gênica , Catálise , Membranas Intracelulares
4.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838863

RESUMO

When it comes to crystal structure determination, computational approaches such as Crystal Structure Prediction (CSP) have gained more and more attention since they offer some insight on how atoms and molecules are packed in the solid state, starting from only very basic information without diffraction data. Furthermore, it is well known that the coupling of CSP with solid-state NMR (SSNMR) greatly enhances the performance and the accuracy of the predictive method, leading to the so-called CSP-NMR crystallography (CSP-NMRX). In this paper, we present the successful application of CSP-NMRX to determine the crystal structure of three structural isomers of pyridine dicarboxylic acid, namely quinolinic, dipicolinic and dinicotinic acids, which can be in a zwitterionic form, or not, in the solid state. In a first step, mono- and bidimensional SSNMR spectra, i.e., 1H Magic-Angle Spinning (MAS), 13C and 15N Cross Polarisation Magic-Angle Spinning (CPMAS), 1H Double Quantum (DQ) MAS, 1H-13C HETeronuclear CORrelation (HETCOR), were used to determine the correct molecular structure (i.e., zwitterionic or not) and the local molecular arrangement; at the end, the RMSEs between experimental and computed 1H and 13C chemical shifts allowed the selection of the correct predicted structure for each system. Interestingly, while quinolinic and dipicolinic acids are zwitterionic and non-zwitterionic, respectively, in the solid state, dinicotinic acid exhibits in its crystal structure a "zwitterionic-non-zwitterionic continuum state" in which the proton is shared between the carboxylic moiety and the pyridinic nitrogen. Very refined SSNMR experiments were carried out, i.e., 14N-1H Phase-Modulated (PM) pulse and Rotational-Echo Saturation-Pulse Double-Resonance (RESPDOR), to provide an accurate N-H distance value confirming the hybrid nature of the molecule. The CSP-NMRX method showed a remarkable match between the selected structures and the experimental ones. The correct molecular input provided by SSNMR reduced the number of CSP calculations to be performed, leading to different predicted structures, while RMSEs provided an independent parameter with respect to the computed energy for the selection of the best candidate.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Espectroscopia de Ressonância Magnética/métodos , Cristalografia por Raios X , Estrutura Molecular
5.
Angew Chem Int Ed Engl ; 61(46): e202205858, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36115062

RESUMO

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Proteoma , Ligantes , Desenho de Fármacos
6.
J Am Chem Soc ; 141(1): 216-222, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30516965

RESUMO

Cytochromes P450 (CYPs) catalyze various oxidative transformations in drug metabolism, xenobiotic degradation, and natural product biosynthesis. Here we report biochemical, structural, and theoretical studies of TxtC, an unusual bifunctional CYP involved in the biosynthesis of the EPA-approved herbicide thaxtomin A. TxtC was shown to hydroxylate two remote sites within the Phe residue of its diketopiperazine substrate thaxtomin D. The reactions follow a preferred order, with hydroxylation of the α-carbon preceding functionalization of the phenyl group. To illuminate the molecular basis for remote site functionalization, X-ray crystal structures of TxtC in complex with the substrate and monohydroxylated intermediate were determined. Electron density corresponding to a diatomic molecule (probably dioxygen) was sandwiched between the heme iron atom and Thr237 in the TxtC-intermediate structure, providing insight into the mechanism for conversion of the ferrous-dioxygen complex into the reactive ferryl intermediate. The substrate and monohydroxylated intermediate adopted similar conformations in the active site, with the π-face of the phenyl group positioned over the heme iron atom. Docking simulations reproduced this observation and identified a second, energetically similar but conformationally distinct binding mode in which the α-hydrogen of the Phe residue is positioned over the heme prosthetic group. Molecular dynamics simulations confirmed that the α-hydrogen is sufficiently close to the ferryl oxygen atom to be extracted by it and indicated that the two substrate conformations cannot readily interconvert in the active site. These results indicate that TxtC is able to hydroxylate two spatially remote sites by binding distinct conformations of the substrate and monohydroxylated intermediate.


Assuntos
Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Indóis/metabolismo , Piperazinas/metabolismo , Sítios de Ligação , Biocatálise , Hidroxilação , Indóis/química , Modelos Moleculares , Piperazinas/química , Conformação Proteica , Especificidade por Substrato
7.
J Am Chem Soc ; 139(2): 719-730, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27989128

RESUMO

The cellular toxicity of copper is usually associated with its ability to generate reactive oxygen species. However, recent studies in bacterial organisms showed that copper toxicity is also strictly connected to iron-sulfur cluster proteins and to their assembly processes. Mitochondria of eukaryotic cells contain a labile copper(I) pool localized in the matrix where also the mitochondrial iron-sulfur (Fe/S) cluster assembly machinery resides to mature mitochondrial Fe/S cluster-containing proteins. Misregulation of copper homeostasis might therefore damage mitochondrial Fe/S protein maturation. To describe, from a molecular perspective, the effects of copper(I) toxicity on such a maturation process, we have here investigated the still unknown mechanism of [4Fe-4S] cluster formation conducted by the mitochondrial ISCA1/ISCA2 and GLRX5 proteins, and defined how copper(I) can impair this process. The molecular model here proposed indicates that the copper(I) and Fe/S protein maturation cellular pathways need to be strictly regulated to avoid copper(I) ion from blocking mitochondrial [4Fe-4S] protein maturation.


Assuntos
Cobre/toxicidade , Proteínas Ferro-Enxofre , Ferro , Mitocôndrias , Modelos Biológicos , Enxofre , Cobre/química , Ferro/química , Proteínas Ferro-Enxofre/química , Enxofre/química
8.
J Am Chem Soc ; 136(46): 16240-50, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25347204

RESUMO

The generation of [4Fe-4S] clusters in mitochondria critically depends, in both yeast and human cells, on two A-type ISC proteins (in mammals named ISCA1 and ISCA2), which perform a nonredundant functional role forming in vivo a heterocomplex. The molecular function of ISCA1 and ISCA2 proteins, i.e., how these proteins help in generating [4Fe-4S] clusters, is still unknown. In this work we have structurally characterized the Fe/S cluster binding properties of human ISCA2 and investigated in vitro whether and how a [4Fe-4S] cluster is assembled when human ISCA1 and ISCA2 interact with the physiological [2Fe-2S](2+) cluster-donor human GRX5. We found that (i) ISCA2 binds either [2Fe-2S] or [4Fe-4S] cluster in a dimeric state, and (ii) two molecules of [2Fe-2S](2+) GRX5 donate their cluster to a heterodimeric ISCA1/ISCA2 complex. This complex acts as an "assembler" of [4Fe-4S] clusters; i.e., the two GRX5-donated [2Fe-2S](2+) clusters generate a [4Fe-4S](2+) cluster. The formation of the same [4Fe-4S](2+) cluster-bound heterodimeric species is also observed by having first one [2Fe-2S](2+) cluster transferred from GRX5 to each individual ISCA1 and ISCA2 proteins to form [2Fe-2S](2+) ISCA2 and [2Fe-2S](2+) ISCA1, and then mixing them together. These findings imply that such heterodimeric complex is the functional unit in mitochondria receiving [2Fe-2S] clusters from hGRX5 and assembling [4Fe-4S] clusters before their transfer to the final target apo proteins.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Enxofre/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Humanos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína
9.
J Biomol NMR ; 58(2): 123-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24414179

RESUMO

A crucial factor for the understanding of structure-function relationships in metalloproteins is the identification of NMR signals from residues surrounding the metal cofactor. When the latter is paramagnetic, the NMR information in the proximity of the metal center may be scarce, because fast nuclear relaxation quenches signal intensity and coherence transfer efficiency. To identify residues at a short distance from a paramagnetic center, we developed a modified version of the ¹5N-HSQC experiment where (1) an inversion recovery filter is added prior to HSQC, (2) the INEPT period has been optimized according to fast relaxation of interested spins, (3) the inverse INEPT has been eliminated and signals acquired as antiphase doublets. The experiment has been successfully tested on a human [Fe2S2] protein which is involved in the biogenesis of iron-sulfur proteins. Thirteen HN resonances, unobserved with conventional HSQC experiments, could be identified. The structural arrangement of the protein scaffold in the proximity of the Fe/S cluster is fundamental to comprehend the molecular processes responsible for the transfer of Fe/S groups in the iron-sulfur protein assembly machineries.


Assuntos
Metaloproteínas/química , Ressonância Magnética Nuclear Biomolecular , Humanos , Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos
10.
Proc Natl Acad Sci U S A ; 108(12): 4811-6, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383138

RESUMO

Oxidative protein folding in the mitochondrial intermembrane space requires the transfer of a disulfide bond from MIA40 to the substrate. During this process MIA40 is reduced and regenerated to a functional state through the interaction with the flavin-dependent sulfhydryl oxidase ALR. Here we present the mechanistic basis of ALR-MIA40 interaction at atomic resolution by biochemical and structural analyses of the mitochondrial ALR isoform and its covalent mixed disulfide intermediate with MIA40. This ALR isoform contains a folded FAD-binding domain at the C-terminus and an unstructured, flexible N-terminal domain, weakly and transiently interacting one with the other. A specific region of the N-terminal domain guides the interaction with the MIA40 substrate binding cleft (mimicking the interaction of the substrate itself), without being involved in the import of ALR. The hydrophobicity-driven binding of this region ensures precise protein-protein recognition needed for an efficient electron transfer process.


Assuntos
Redutases do Citocromo/química , Flavina-Adenina Dinucleotídeo/química , Proteínas de Transporte da Membrana Mitocondrial/química , Sítios de Ligação , Redutases do Citocromo/metabolismo , Transporte de Elétrons/fisiologia , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Estrutura Terciária de Proteína , Especificidade por Substrato/fisiologia
11.
JACS Au ; 4(6): 2372-2380, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38938811

RESUMO

The characterization of intrinsically disordered regions (IDRs) in membrane-associated proteins is of crucial importance to elucidate key biochemical processes, including cellular signaling, drug targeting, or the role of post-translational modifications. These protein regions pose significant challenges to powerful analytical techniques of molecular structural investigations. We here applied magic angle spinning solid-state nuclear magnetic resonance to quantitatively probe the structural dynamics of IDRs of membrane-bound α-synuclein (αS), a disordered protein whose aggregation is associated with Parkinson's disease (PD). We focused on the mitochondrial binding of αS, an interaction that has functional and pathological relevance in neuronal cells and that is considered crucial for the underlying mechanisms of PD. Transverse and longitudinal 15N relaxation revealed that the dynamical properties of IDRs of αS bound to the outer mitochondrial membrane (OMM) are different from those of the cytosolic state, thus indicating that regions generally considered not to interact with the membrane are in fact affected by the spatial proximity with the lipid bilayer. Moreover, changes in the composition of OMM that are associated with lipid dyshomeostasis in PD were found to significantly perturb the topology and dynamics of IDRs in the membrane-bound state of αS. Taken together, our data underline the importance of characterizing IDRs in membrane proteins to achieve an accurate understanding of the role that these elusive protein regions play in numerous biochemical processes occurring on cellular surfaces.

12.
Dalton Trans ; 53(23): 9933-9941, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38808660

RESUMO

In this contribution, a terpyridine-based ligand bearing a thioether functionality is used to prepare a new cobalt(II) spin crossover complex: [Co(TerpyPhSMe)2](PF6)2 (1), where TerpyPhSMe is 4'-(4-methylthiophenyl)-2,2':6',2''-terpyridine. Its structure, determined by single crystal X-ray diffraction, reveals a mer coordination of the tridentate terpyridine ligands, leading to a tetragonally compressed octahedron. Intermolecular interactions in the crystal lattice freeze the complex in the high spin state in the solid state at all temperatures, as indicated by magnetometry and Electron Paramagnetic Resonance (EPR) spectra. When dissolved in acetonitrile, however, temperature dependent electronic, 1H-NMR and EPR spectra highlight an entropy-driven spin crossover transition, whose thermodynamics parameters have been determined. This is the first report of a cobalt(II) SCO complex featuring a thioether group, allowing its implementation in chemically grown bistable monolayers and may open important perspectives for the use of such systems in molecular spintronics.

13.
J Biol Chem ; 287(32): 26539-48, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22707729

RESUMO

Nucleophosmin (NPM1) is a nucleocytoplasmic shuttling protein, mainly localized at nucleoli, that plays a key role in several cellular functions, including ribosome maturation and export, centrosome duplication, and response to stress stimuli. More than 50 mutations at the terminal exon of the NPM1 gene have been identified so far in acute myeloid leukemia; the mutated proteins are aberrantly and stably localized in the cytoplasm due to high destabilization of the NPM1 C-terminal domain and the appearance of a new nuclear export signal. We have shown previously that the 70-residue NPM1 C-terminal domain (NPM1-C70) is able to bind with high affinity a specific region at the c-MYC gene promoter characterized by parallel G-quadruplex structure. Here we present the solution structure of the NPM1-C70 domain and NMR analysis of its interaction with a c-MYC-derived G-quadruplex. These data were used to calculate an experimentally restrained molecular docking model for the complex. The NPM1-C70 terminal three-helix bundle binds the G-quadruplex DNA at the interface between helices H1 and H2 through electrostatic interactions with the G-quadruplex phosphate backbone. Furthermore, we show that the 17-residue lysine-rich sequence at the N terminus of the three-helix bundle is disordered and, although necessary, does not participate directly in the contact surface in the complex.


Assuntos
DNA/metabolismo , Quadruplex G , Genes myc , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Sequência de Bases , Sítios de Ligação , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Nucleofosmina , Oligodesoxirribonucleotídeos
14.
Proc Natl Acad Sci U S A ; 107(47): 20190-5, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059946

RESUMO

Several proteins of the mitochondrial intermembrane space are targeted by internal targeting signals. A class of such proteins with α-helical hairpin structure bridged by two intramolecular disulfides is trapped by a Mia40-dependent oxidative process. Here, we describe the oxidative folding mechanism underpinning this process by an exhaustive structural characterization of the protein in all stages and as a complex with Mia40. Two consecutive induced folding steps are at the basis of the protein-trapping process. In the first one, Mia40 functions as a molecular chaperone assisting α-helical folding of the internal targeting signal of the substrate. Subsequently, in a Mia40-independent manner, folding of the second substrate helix is induced by the folded targeting signal functioning as a folding scaffold. The Mia40-induced folding pathway provides a proof of principle for the general concept that internal targeting signals may operate as a folding nucleus upon compartment-specific activation.


Assuntos
Proteínas de Transporte/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/metabolismo , Dobramento de Proteína , Transporte Proteico/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte de Cobre , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Químicos , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Ressonância Magnética Nuclear Biomolecular
15.
Biomol NMR Assign ; 17(1): 1-8, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36272047

RESUMO

The genome of Hepatitis E virus (HEV) is 7.2 kilobases long and has three open reading frames. The largest one is ORF1, encoding a non-structural protein involved in the replication process, and whose processing is ill-defined. The ORF1 protein is a multi-modular protein which includes a macro domain (MD). MDs are evolutionarily conserved structures throughout all kingdoms of life. MDs participate in the recognition and removal of ADP-ribosylation, and specifically viral MDs have been identified as erasers of ADP-ribose moieties interpreting them as important players at escaping the early stages of host-immune response. A detailed structural analysis of the apo and bound to ADP-ribose state of the native HEV MD would provide the structural information to understand how HEV MD is implicated in virus-host interplay and how it interacts with its intracellular partner during viral replication. In the present study we present the high yield expression of the native macro domain of HEV and its analysis by solution NMR spectroscopy. The HEV MD is folded in solution and we present a nearly complete backbone and sidechains assignment for apo and bound states. In addition, a secondary structure prediction by TALOS + analysis was performed. The results indicated that HEV MD has a α/ß/α topology very similar to that of most viral macro domains.


Assuntos
Adenosina Difosfato Ribose , Vírus da Hepatite E , Adenosina Difosfato Ribose/metabolismo , Vírus da Hepatite E/genética , Vírus da Hepatite E/metabolismo , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Ressonância Magnética
16.
IUCrJ ; 10(Pt 4): 448-463, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37335768

RESUMO

Leucopterin (C6H5N5O3) is the white pigment in the wings of Pieris brassicae butterflies, and other butterflies; it can also be found in wasps and other insects. Its crystal structure and its tautomeric form in the solid state were hitherto unknown. Leucopterin turned out to be a variable hydrate, with 0.5 to about 0.1 molecules of water per leucopterin molecule. Under ambient conditions, the preferred state is the hemihydrate. Initially, all attempts to grow single crystals suitable for X-ray diffraction were to no avail. Attempts to determine the crystal structure by powder diffraction using the direct-space method failed, because the trials did not include the correct, but rare, space group P2/c. Attempts were made to solve the crystal structure by a global fit to the pair distribution function (PDF-Global-Fit), as described by Prill and co-workers [Schlesinger et al. (2021). J. Appl. Cryst. 54, 776-786]. The approach worked well, but the correct structure was not found, because again the correct space group was not included. Finally, tiny single crystals of the hemihydrate could be obtained, which allowed at least the determination of the crystal symmetry and the positions of the C, N and O atoms. The tautomeric state of the hemihydrate was assessed by multinuclear solid-state NMR spectroscopy. 15N CPMAS spectra showed the presence of one NH2 and three NH groups, and one unprotonated N atom, which agreed with the 1H MAS and 13C CPMAS spectra. Independently, the tautomeric state was investigated by lattice-energy minimizations with dispersion-corrected density functional theory (DFT-D) on 17 different possible tautomers, which also included the prediction of the corresponding 1H, 13C and 15N chemical shifts in the solid. All methods showed the presence of the 2-amino-3,5,8-H tautomer. The DFT-D calculations also confirmed the crystal structure. Heating of the hemihydrate results in a slow release of water between 130 and 250 °C, as shown by differential thermal analysis and thermogravimetry (DTA-TG). Temperature-dependent powder X-ray diffraction (PXRD) showed an irreversible continuous shift of the reflections upon heating, which reveals that leucopterin is a variable hydrate. This observation was also confirmed by PXRD of samples obtained under various synthetic and drying conditions. The crystal structure of a sample with about 0.2 molecules of water per leucopterin was solved by a fit with deviating lattice parameters (FIDEL), as described by Habermehl et al. [Acta Cryst. (2022), B78, 195-213]. A local fit, starting from the structure of the hemihydrate, as well as a global fit, starting from random structures, were performed, followed by Rietveld refinements. Despite dehydration, the space group remains P2/c. In both structures (hemihydrate and variable hydrate), the leucopterin molecules are connected by 2-4 hydrogen bonds into chains, which are connected by further hydrogen bonds to neighbouring chains. The molecular packing is very efficient. The density of leucopterin hemihydrate is as high as 1.909 kg dm-3, which is one of the highest densities for organic compounds consisting of C, H, N and O only. The high density might explain the good light-scattering and opacity properties of the wings of Pieris brassicae and other butterflies.


Assuntos
Borboletas , Animais , Análise dos Mínimos Quadrados , Espectroscopia de Ressonância Magnética , Água/química
17.
ACS Appl Mater Interfaces ; 15(12): 15819-15831, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926827

RESUMO

A novel 2D covalent organic polymer (COP), based on conjugated quinoid-oligothiophene (QOT) and tris(aminophenyl) benzene (TAPB) moieties, is designed and synthesized (TAPB-QOT COP). Some DFT calculations are made to clarify the equilibrium between different QOT isomers and how they could affect the COP formation. Once synthetized, the polymer has been thoroughly characterized by spectroscopic (i.e., Raman, UV-vis), SSNMR and surface (e.g., SEM, BET) techniques, showing a modest surface area (113 m2 g-1) and micropore volume (0.014 cm3 g-1 with an averaged pore size of 5.6-8 Å). Notwithstanding this, TAPB-QOT COP shows a remarkably high iodine (I2) uptake capacity (464 %wt) comparable to or even higher than state-of-the-art porous organic polymers (POPs). These auspicious values are due to the thoughtful design of the polymer with embedded sulfur sites and a conjugated scaffold with the ability to counterbalance the relatively low pore volumes. Indeed, both morphological and Raman data, supported by computational analyses, prove the very high affinity between the S atom in our COP and the I2. As a result, TAPB-QOT COP shows the highest volumetric I2 uptake (i.e., the amount of I2 uptaken per volume unit) up to 331 g cm-3 coupled with a remarkably high reversibility (>80% after five cycles).

18.
Artigo em Inglês | MEDLINE | ID: mdl-36981793

RESUMO

Polymers via high internal phase emulsion (polyHIPEs) were molecularly imprinted with Irbesartan, an antihypertensive drug belonging to the class of angiotensin II receptor antagonists (sartan drugs), chosen for the proof-of-concept extraction of hazardous emerging contaminants from water. Different analyte-functional monomer molar ratios (1:100, 1:30 and 1:15) were investigated, and the MIP polyHIPEs have been characterized, parallel to the not imprinted polymer (NIP), by batch sorption experiments. The material with the highest template-functional monomer ratio was the best for Irbesartan removal, showing a sorption capacity fivefold higher than the NIP. Regarding the adsorption kinetics, the analyte-sorbent equilibrium was reached after about 3 h, and the film diffusion model best fitted the kinetic profile. Selectivity was further demonstrated by testing Losartan, another sartan drug, observing a fourfold lower sorption capacity, but still higher than that of NIP. The polymers were also synthesized in cartridges for solid-phase extraction (SPE), which was helpful for evaluating the breakthrough curves and performing pre-concentrations. These have been done in tap and river water samples (100-250 mL, 15-500 µg L-1 Irbesartan), obtaining quantitative sorption/desorption on the MIP-polyHIPE (RSD < 14%, n = 3). The NIP provided a recovery of just around 30%, evidence of partial uptake of the target from water.


Assuntos
Impressão Molecular , Cromatografia Líquida de Alta Pressão , Antagonistas de Receptores de Angiotensina , Bloqueadores do Receptor Tipo 2 de Angiotensina II , Irbesartana , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Água/química , Polímeros/química , Extração em Fase Sólida , Adsorção
19.
J Biol Chem ; 286(39): 34382-90, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21816817

RESUMO

Human Cox17 is the mitochondrial copper chaperone responsible for supplying copper ions, through the assistance of Sco1, Sco2, and Cox11, to cytochrome c oxidase, the terminal enzyme of the mitochondrial energy-transducing respiratory chain. It consists of a coiled coil-helix-coiled coil-helix domain stabilized by two disulfide bonds and binds one copper(I) ion through a Cys-Cys motif. Here, the structures and the backbone mobilities of two Cox17 mutated forms with only one interhelical disulfide bond have been analyzed. It appears that the inner disulfide bond (formed by Cys-36 and Cys-45) stabilizes interhelical hydrophobic interactions, providing a structure with essentially the same structural dynamic properties of the mature Cox17 state. On the contrary, the external disulfide bond (formed by Cys-26 and Cys-55) generates a conformationally flexible α-helical protein, indicating that it is not able to stabilize interhelical packing contacts, but is important for structurally organizing the copper-binding site region.


Assuntos
Proteínas de Transporte/química , Dissulfetos/química , Sítios de Ligação , Proteínas de Transporte/metabolismo , Cobre/química , Cobre/metabolismo , Proteínas de Transporte de Cobre , Dissulfetos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
20.
J Am Chem Soc ; 134(3): 1442-5, 2012 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-22224850

RESUMO

The oxidative folding mechanism in the intermembrane space of human mitochondria underpins a disulfide relay system consisting of the import receptor Mia40 and the homodimeric FAD-dependent thiol oxidase ALR. The flavoprotein ALR receives two electrons per subunit from Mia40, which are then donated through one-electron reactions to two cytochrome c molecules, thus mediating a switch from two-electron to one-electron transfer. We dissect here the mechanism of the electron flux within ALR, characterizing at the atomic level the ALR intermediates that allow electrons to rapidly flow to cytochrome c. The intermediate critical for the electron-transfer process implies the formation of a specific inter-subunit disulfide which exclusively allows electron flow from Mia40 to FAD. This finding allows us to present a complete model for the electron-transfer pathway in ALR.


Assuntos
Redutases do Citocromo/metabolismo , Citocromos c/metabolismo , Dissulfetos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Dicroísmo Circular , Redutases do Citocromo/química , Citocromos c/química , Dissulfetos/química , Transporte de Elétrons , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA