Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 38(2): 686-701, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32915961

RESUMO

Despite significant advances in invertebrate phylogenomics over the past decade, the higher-level phylogeny of Pycnogonida (sea spiders) remains elusive. Due to the inaccessibility of some small-bodied lineages, few phylogenetic studies have sampled all sea spider families. Previous efforts based on a handful of genes have yielded unstable tree topologies. Here, we inferred the relationships of 89 sea spider species using targeted capture of the mitochondrial genome, 56 conserved exons, 101 ultraconserved elements, and 3 nuclear ribosomal genes. We inferred molecular divergence times by integrating morphological data for fossil species to calibrate 15 nodes in the arthropod tree of life. This integration of data classes resolved the basal topology of sea spiders with high support. The enigmatic family Austrodecidae was resolved as the sister group to the remaining Pycnogonida and the small-bodied family Rhynchothoracidae as the sister group of the robust-bodied family Pycnogonidae. Molecular divergence time estimation recovered a basal divergence of crown group sea spiders in the Ordovician. Comparison of diversification dynamics with other marine invertebrate taxa that originated in the Paleozoic suggests that sea spiders and some crustacean groups exhibit resilience to mass extinction episodes, relative to mollusk and echinoderm lineages.


Assuntos
Artrópodes/genética , Filogenia , Animais , Feminino , Genoma , Masculino
2.
Nat Commun ; 15(1): 8340, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333524

RESUMO

A pattern of increasing species richness from the poles to the equator is frequently observed in many animal taxa. Ecological limits, determined by the abiotic conditions and biotic interactions within an environment, are one of the major factors influencing the geographical distribution of species diversity. Energy availability is often considered a crucial limiting factor, with temperature and productivity serving as empirical measures. However, these measures may not fully explain the observed species richness, particularly in marine ecosystems. Here, through a global comparative approach and standardised methodologies, such as Autonomous Reef Monitoring Structures (ARMS) and DNA metabarcoding, we show that the seasonality of primary production explains sessile animal richness comparatively or better than surface temperature or primary productivity alone. A Hierarchical Generalised Additive Model (HGAM) is validated, after a model selection procedure, and the prediction error is compared, following a cross-validation approach, with HGAMs including environmental variables commonly used to explain animal richness. Moreover, the linear effect of production magnitude on species richness becomes apparent only when considered jointly with seasonality, and, by identifying world coastal areas characterized by extreme values of both, we postulate that this effect may result in a positive relationship in environments with lower seasonality.


Assuntos
Biodiversidade , Estações do Ano , Animais , Ecossistema , Recifes de Corais , Temperatura , Organismos Aquáticos/fisiologia , Código de Barras de DNA Taxonômico
3.
Sci Rep ; 9(1): 8062, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147605

RESUMO

In recent years, sea ice cover along coasts of East Antarctica has tended to increase. To understand ecological implications of these environmental changes, we studied benthic food web structure on the coasts of Adélie Land during an event of unusually high sea ice cover (i.e. two successive austral summers without seasonal breakup). We used integrative trophic markers (stable isotope ratios of carbon, nitrogen and sulfur) to build ecological models and explored feeding habits of macroinvertebrates. In total, 28 taxa spanning most present animal groups and functional guilds were investigated. Our results indicate that the absence of seasonal sea ice breakup deeply influenced benthic food webs. Sympagic algae dominated the diet of many key consumers, and the trophic levels of invertebrates were low, suggesting omnivore consumers did not rely much on predation and/or scavenging. Our results provide insights about how Antarctic benthic consumers, which typically live in an extremely stable environment, might adapt their feeding habits in response to sudden changes in environmental conditions and trophic resource availability. They also show that local and/or global trends of sea ice increase in Antarctica have the potential to cause drastic changes in food web structure, and therefore to impact benthic communities.


Assuntos
Organismos Aquáticos/fisiologia , Monitorização de Parâmetros Ecológicos , Cadeia Alimentar , Camada de Gelo , Invertebrados/fisiologia , Animais , Regiões Antárticas , Isótopos de Carbono/análise , Mudança Climática , Comportamento Alimentar , Sedimentos Geológicos/análise , Modelos Teóricos , Isótopos de Nitrogênio/análise , Estações do Ano , Água do Mar/análise , Isótopos de Enxofre/análise
4.
Cladistics ; 18(5): 526-536, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34911212

RESUMO

A new method of genomic maps analysis is described. The purpose of the method is to reconstruct phylogenetic relationships from the genomic organization of taxa. Our approach is based on gene order coding. This coding allows the description of genome topology without a prior hypothesis about evolutionary events and phylogenetic relationships. Different characters are used for each gene: (1) presence/absence, (2) orientation, and (3) relative position. The relative position of a particular gene inside the genome is the pair of genes surrounding it. The relative position character represents all the positions of a gene in the sampled genomes. It is coded as a multistate character. Our coding method has a priori variable cost implications on operators such as inversion, transposition, and gene loss/gain, which we discuss. The overall approach best fits the "duplication, random loss" evolutionary model. The coding method allows the reconstitution of a possible hypothetical common ancestor genome at each node of the tree. This reconstitution is based on the character states' optimization; it comes down to choosing, among all possible optimizations, the optimization compatible with a complete genome topology at each internal node. The multistate coding of gene relative position, which is an undeniable advantage of this method, permits this reconstitution.

5.
PLoS One ; 8(8): e68787, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936311

RESUMO

There has been a significant body of literature on species flock definition but not so much about practical means to appraise them. We here apply the five criteria of Eastman and McCune for detecting species flocks in four taxonomic components of the benthic fauna of the Antarctic shelf: teleost fishes, crinoids (feather stars), echinoids (sea urchins) and crustacean arthropods. Practical limitations led us to prioritize the three historical criteria (endemicity, monophyly, species richness) over the two ecological ones (ecological diversity and habitat dominance). We propose a new protocol which includes an iterative fine-tuning of the monophyly and endemicity criteria in order to discover unsuspected flocks. As a result nine « full ¼ species flocks (fulfilling the five criteria) are briefly described. Eight other flocks fit the three historical criteria but need to be further investigated from the ecological point of view (here called "core flocks"). The approach also shows that some candidate taxonomic components are no species flocks at all. The present study contradicts the paradigm that marine species flocks are rare. The hypothesis according to which the Antarctic shelf acts as a species flocks generator is supported, and the approach indicates paths for further ecological studies and may serve as a starting point to investigate the processes leading to flock-like patterning of biodiversity.


Assuntos
Biodiversidade , Evolução Biológica , Peixes/fisiologia , Animais , Regiões Antárticas , Ecologia , Ecossistema , Densidade Demográfica
6.
PLoS One ; 7(12): e51263, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251474

RESUMO

BACKGROUND: Researchers sorely need markers and approaches for biodiversity exploration (both specimen linked and metagenomics) using the full potential of next generation sequencing technologies (NGST). Currently, most studies rely on expensive multiple tagging, PCR primer universality and/or the use of few markers, sometimes with insufficient variability. METHODOLOGY/PRINCIPAL FINDINGS: We propose a novel approach for the isolation and sequencing of a universal, useful and popular marker across distant, non-model metazoans: the complete mitochondrial genome. It relies on the properties of metazoan mitogenomes for enrichment, on careful choice of the organisms to multiplex, as well as on the wide collection of accumulated mitochondrial reference datasets for post-sequencing sorting and identification instead of individual tagging. Multiple divergent organisms can be sequenced simultaneously, and their complete mitogenome obtained at a very low cost. We provide in silico testing of dataset assembly for a selected set of example datasets. CONCLUSIONS/SIGNIFICANCE: This approach generates large mitogenome datasets. These sequences are useful for phylogenetics, molecular identification and molecular ecology studies, and are compatible with all existing projects or available datasets based on mitochondrial sequences, such as the Barcode of Life project. Our method can yield sequences both from identified samples and metagenomic samples. The use of the same datasets for both kinds of studies makes for a powerful approach, especially since the datasets have a high variability even at species level, and would be a useful complement to the less variable 18S rDNA currently prevailing in metagenomic studies.


Assuntos
DNA Mitocondrial/genética , Metagenômica , Animais , Controle de Qualidade
7.
Mol Phylogenet Evol ; 22(2): 184-92, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11820840

RESUMO

The phylogenetic position of cyclostomes, i.e., the relationships between hagfishes, lampreys, and jawed vertebrates is an unresolved problem. Anatomical data support the paraphyly of cyclostomes, whereas nuclear genes data support monophyly of cyclostomes. Previous results obtained using mitochondrial DNA are ambiguous, presumably due to a lack of informative sequences. By adding the complete mtDNA of a hagfish, Eptatretus burgeri, we have generated a novel data set for sequences of hagfishes and of lampreys. The addition of this mtDNA sequence to the 12 taxa we have already used becomes sufficient to obtain unambiguous results. This data set, which includes sequences of mtDNA of animals closely related to the lamprey/hagfish node, was used in a phylogenetic analysis with two independent statistical approaches and unequivocally supported the monophyly of cyclostomes. Thus molecular data, i.e., our results and those obtained using nuclear genes, conclude that hagfishes and lampreys form a clade.


Assuntos
DNA Mitocondrial/genética , Feiticeiras (Peixe)/genética , Filogenia , Animais , DNA Mitocondrial/química , Dados de Sequência Molecular , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA