Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298847

RESUMO

This paper reports the synthesis, structure, photophysical, and optoelectronic properties of five eight-coordinate Europium(III) ternary complexes, namely, [Eu(hth)3(L)2], bearing 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione (hth) as a sensitizer and L = H2O (1), dpso (diphenyl sulphoxide, 2), dpsoCH3 (4,4'-dimethyl diphenyl sulfoxide, 3), dpsoCl (bis(4-chlorophenyl)sulphoxide, 4), and tppo (triphenylphosphine oxide, 5) as co-ligands. The NMR and the crystal structure analysis confirmed the eight-coordinate structures of the complexes in solution and in a solid state. Upon UV-excitation on the absorption band of the ß-diketonate ligand hth, all complexes showed the characteristic bright red luminescence of the Europium ion. The tppo derivative (5) displayed the highest quantum yield (up to 66%). As a result, an organic light-emitting device, OLED, was fabricated with a multi-layered structure-ITO/MoO3/mCP/SF3PO:[complex 5] (10%)/TPBi:[complex 5] (10%)/TmPyPB/LiF/Al-using complex 5 as the emitting component.


Assuntos
Európio , Polimetil Metacrilato , Európio/química , Polimetil Metacrilato/química , Luminescência , Cetonas/química , Ligantes
2.
Sensors (Basel) ; 21(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300663

RESUMO

This paper investigates the electrochemical properties of a new Cu(II)-based metal-organic framework (MOF). Noted as Cu-YBDC, it is built upon a linker containing the propargyl carbamate functionality and immobilized on a glassy carbon electrode by drop-casting (GC/Cu-YBDC). Afterward, GC/Cu-YBDC was treated with HAuCl4 and the direct electro-deposition of Au nanoparticles was carried at 0.05 V for 600 s (GC/Au/Cu-YBDC). The performance of both electrodes towards nitrite oxidation was tested and it was found that GC/Au/Cu-YBDC exhibited a better electrocatalytic behavior toward the oxidation of nitrite than GC/Cu-YBDC with enhanced catalytic currents and a reduced nitrite overpotential from 1.20 to 0.90 V. Additionally GC/Au/Cu-YBDC showed a low limit of detection (5.0 µM), an ultrafast response time (<2 s), and a wide linear range of up to 8 mM in neutral pH.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Carbamatos , Cobre , Técnicas Eletroquímicas , Eletrodos , Ouro , Ligantes , Limite de Detecção , Nitritos , Ácidos Ftálicos
3.
RSC Adv ; 12(43): 28217-28226, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320282

RESUMO

Ambient humidity is an important parameter that affects the manufacturing and storage of several industrial and agricultural goods. In the view of the Internet of Things (IoT), single sensors could be associated with an object for smart monitoring enabling optimum conditions to be maintained. Nevertheless, the production of cost-effective humidity sensors for indoor and outdoor environmental monitoring currently represents the main bottleneck in the development of this technology. Herein we report the results obtained with sensors exclusively made of cellulose and polyaniline (cell/PANI) under strictly controlled relative humidity (30-50 RH%) and temperature (21 ± 1 °C) achieved with a climatic chamber that simulates the conditions of indoor air humidity, and at different RH% in a lab test chamber set-up. Cell/PANI sensors, prepared with a simple, inexpensive, and easily scalable industrial paper process, show a linear trend with a slope of 1.41 µA RH%-1 and a percentage of sensitivity of 13%. Response time as well as percentage of sensitivity results are similar to those of a commercial digital-output relative humidity and temperature sensor (DHT22) employed in parallel for comparison. The commercial sensor DHT22 has a sensitivity of 14%. This low-cost sensor has potential applications in agriculture, food monitoring, and medical and industrial environments as a disposable sensor for humidity detection.

4.
RSC Adv ; 11(33): 20429-20438, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35479884

RESUMO

A copper-based metal-organic framework (MOF) was prepared using a new linker, a 5-substituted isophthalic acid bearing a propargyl carbamate group, intended to provide a terminal alkyne function protruding from the material surface to generate supported gold species for potential catalytic applications. The novel material was fully characterized by spectroscopic analyses of different kinds: FTIR, Raman, EDX, and XPS, as well as by thermal and surface area measurements. Synchrotron X-ray diffraction data analysis, in particular, revealed that this MOF, labelled [Cu(1,3-YBDC)]·xH2O (x ∼ 2), where Y stands for the pendant alkYne and BDC for benzene dicarboxylate, contains a complex network of 5-substituted isophthalate anions bound to Cu(ii) centers, arranged in pairs within paddlewheel (or "Chinese lantern") fragments of Cu2(µ-COO)4(D)2 formulation (D being a neutral Lewis base), with a short Cu⋯Cu distance of 2.633(4) Å. Quite unexpectedly, the apical atom in the paddlewheel structure belongs to the carbamate carbonyl oxygen atom. Such extra coordination by the propargyl carbamate groups drastically reduces the MOF porosity, a feature that was also confirmed by BET measurements. However, the MOF functionality is retained at the external crystal surface where 2% of active terminal alkynes is located.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA