Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619110

RESUMO

The organization of sensory maps in the cerebral cortex depends on experience, which drives homeostatic and long-term synaptic plasticity of cortico-cortical circuits. In the mouse primary somatosensory cortex (S1) afferents from the higher-order, posterior medial thalamic nucleus (POm) gate synaptic plasticity in layer (L) 2/3 pyramidal neurons via disinhibition and the production of dendritic plateau potentials. Here we address whether these thalamocortically mediated responses play a role in whisker map plasticity in S1. We find that trimming all but two whiskers causes a partial fusion of the representations of the two spared whiskers, concomitantly with an increase in the occurrence of POm-driven N-methyl-D-aspartate receptor-dependent plateau potentials. Blocking the plateau potentials restores the archetypical organization of the sensory map. Our results reveal a mechanism for experience-dependent cortical map plasticity in which higher-order thalamocortically mediated plateau potentials facilitate the fusion of normally segregated cortical representations.


Assuntos
Potenciais de Ação/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Rede Nervosa/fisiologia , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Vibrissas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Mapeamento Encefálico/métodos , Maleato de Dizocilpina/farmacologia , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas GABAérgicos/farmacologia , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/anatomia & histologia , Plasticidade Neuronal/efeitos dos fármacos , Imagem Óptica , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Células Piramidais/citologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/anatomia & histologia , Tálamo/anatomia & histologia , Vibrissas/lesões
2.
Nature ; 515(7525): 116-9, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25174710

RESUMO

Long-term synaptic potentiation (LTP) is thought to be a key process in cortical synaptic network plasticity and memory formation. Hebbian forms of LTP depend on strong postsynaptic depolarization, which in many models is generated by action potentials that propagate back from the soma into dendrites. However, local dendritic depolarization has been shown to mediate these forms of LTP as well. As pyramidal cells in supragranular layers of the somatosensory cortex spike infrequently, it is unclear which of the two mechanisms prevails for those cells in vivo. Using whole-cell recordings in the mouse somatosensory cortex in vivo, we demonstrate that rhythmic sensory whisker stimulation efficiently induces synaptic LTP in layer 2/3 (L2/3) pyramidal cells in the absence of somatic spikes. The induction of LTP depended on the occurrence of NMDAR (N-methyl-d-aspartate receptor)-mediated long-lasting depolarizations, which bear similarities to dendritic plateau potentials. In addition, we show that whisker stimuli recruit synaptic networks that originate from the posteromedial complex of the thalamus (POm). Photostimulation of channelrhodopsin-2 expressing POm neurons generated NMDAR-mediated plateau potentials, whereas the inhibition of POm activity during rhythmic whisker stimulation suppressed the generation of those potentials and prevented whisker-evoked LTP. Taken together, our data provide evidence for sensory-driven synaptic LTP in vivo, in the absence of somatic spiking. Instead, LTP is mediated by plateau potentials that are generated through the cooperative activity of lemniscal and paralemniscal synaptic circuitry.


Assuntos
Dendritos/fisiologia , Potenciação de Longa Duração , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação , Animais , Channelrhodopsins , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Física , Receptores de N-Metil-D-Aspartato/metabolismo , Tálamo/citologia , Tálamo/fisiologia , Vibrissas/fisiologia
3.
Nature ; 511(7510): 471-4, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24828045

RESUMO

During development, thalamocortical (TC) input has a critical role in the spatial delineation and patterning of cortical areas, yet the underlying cellular and molecular mechanisms that drive cortical neuron differentiation are poorly understood. In the primary (S1) and secondary (S2) somatosensory cortex, layer 4 (L4) neurons receive mutually exclusive input originating from two thalamic nuclei: the ventrobasalis (VB), which conveys tactile input, and the posterior nucleus (Po), which conveys modulatory and nociceptive input. Recently, we have shown that L4 neuron identity is not fully committed postnatally, implying a capacity for TC input to influence differentiation during cortical circuit assembly. Here we investigate whether the cell-type-specific molecular and functional identity of L4 neurons is instructed by the origin of their TC input. Genetic ablation of the VB at birth resulted in an anatomical and functional rewiring of Po projections onto L4 neurons in S1. This induced acquisition of Po input led to a respecification of postsynaptic L4 neurons, which developed functional molecular features of Po-target neurons while repressing VB-target traits. Respecified L4 neurons were able to respond both to touch and to noxious stimuli, in sharp contrast to the normal segregation of these sensory modalities in distinct cortical circuits. These findings reveal a behaviourally relevant TC-input-type-specific control over the molecular and functional differentiation of postsynaptic L4 neurons and cognate intracortical circuits, which instructs the development of modality-specific neuronal and circuit properties during corticogenesis.


Assuntos
Diferenciação Celular , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Densidade Pós-Sináptica/fisiologia , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Capsaicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Noxas/farmacologia , Optogenética , Densidade Pós-Sináptica/efeitos dos fármacos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/efeitos dos fármacos , Tato/fisiologia , Vibrissas/efeitos dos fármacos , Vibrissas/fisiologia
4.
PLoS Biol ; 12(3): e1001820, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24667537

RESUMO

Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region associated with neurobehavioral dysfunction, in the modulation of cyclic AMP/PKA signaling. We found that coronin 1 is specifically expressed in excitatory but not inhibitory neurons and that coronin 1 deficiency results in loss of excitatory synapses and severe neurobehavioral disabilities, including reduced anxiety, social deficits, increased aggression, and learning defects. Electrophysiological analysis of excitatory synaptic transmission in amygdala revealed that coronin 1 was essential for cyclic-AMP-protein kinase A-dependent presynaptic plasticity. We further show that upon cell surface stimulation, coronin 1 interacted with the G protein subtype Gαs to stimulate the cAMP/PKA pathway. The absence of coronin 1 or expression of coronin 1 mutants unable to interact with Gαs resulted in a marked reduction in cAMP signaling. Strikingly, synaptic plasticity and behavioral defects of coronin 1-deficient mice were restored by in vivo infusion of a membrane-permeable cAMP analogue. Together these results identify coronin 1 as being important for cognition and behavior through its activity in promoting cAMP/PKA-dependent synaptic plasticity and may open novel avenues for the dissection of signal transduction pathways involved in neurobehavioral processes.


Assuntos
Comportamento Animal , Cognição/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas dos Microfilamentos/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Memória , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais , Comportamento Social
5.
J Neurosci ; 33(34): 13805-19, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23966701

RESUMO

Intellectual disorders (IDs) have been regularly associated with morphological and functional deficits at glutamatergic synapses in both humans and rodents. How these synaptic deficits may lead to the variety of learning and memory deficits defining ID is still unknown. Here we studied the functional and behavioral consequences of the ID gene il1rapl1 deficiency in mice and reported that il1rapl1 constitutive deletion alters cued fear memory formation. Combined in vivo and in vitro approaches allowed us to unveil a causal relationship between a marked inhibitory/excitatory (I/E) imbalance in dedicated amygdala neuronal subcircuits and behavioral deficits. Cell-targeted recordings further demonstrated a morpho-functional impact of the mutation at thalamic projections contacting principal cells, whereas the same afferents on interneurons are unaffected by the lack of Il1rapl1. We thus propose that excitatory synapses have a heterogeneous vulnerability to il1rapl1 gene constitutive mutation and that alteration of a subset of excitatory synapses in neuronal circuits is sufficient to generate permanent cognitive deficits.


Assuntos
Potenciais Pós-Sinápticos Excitadores/genética , Deficiência Intelectual/complicações , Transtornos da Memória/etiologia , Tonsila do Cerebelo/citologia , Anestésicos Locais/farmacologia , Animais , Aprendizagem por Associação/fisiologia , Córtex Cerebral/citologia , Channelrhodopsins , Condicionamento Psicológico/fisiologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/fisiologia , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Técnicas In Vitro , Deficiência Intelectual/genética , Proteína Acessória do Receptor de Interleucina-1/genética , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/fisiologia , Neurônios/ultraestrutura
6.
Cell Rep ; 39(2): 110667, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417707

RESUMO

Cortical wiring relies on guidepost cells and activity-dependent processes that are thought to act sequentially. Here, we show that the construction of layer 1 (L1), a main site of top-down integration, is regulated by crosstalk between transient Cajal-Retzius cells (CRc) and spontaneous activity of the thalamus, a main driver of bottom-up information. While activity was known to regulate CRc migration and elimination, we found that prenatal spontaneous thalamic activity and NMDA receptors selectively control CRc early density, without affecting their demise. CRc density, in turn, regulates the distribution of upper layer interneurons and excitatory synapses, thereby drastically impairing the apical dendrite activity of output pyramidal neurons. In contrast, postnatal sensory-evoked activity had a limited impact on L1 and selectively perturbed basal dendrites synaptogenesis. Collectively, our study highlights a remarkable interplay between thalamic activity and CRc in L1 functional wiring, with major implications for our understanding of cortical development.


Assuntos
Interneurônios , Células Piramidais , Dendritos/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Tálamo
7.
Proc Natl Acad Sci U S A ; 105(39): 15130-5, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18815362

RESUMO

NMDA receptor-dependent long-term potentiation (LTP) of glutamatergic synaptic transmission in sensory pathways from auditory thalamus or cortex to the lateral amygdala (LA) underlies the acquisition of auditory fear conditioning. Whereas the mechanisms of postsynaptic LTP at thalamo-LA synapses are well understood, much less is known about the sequence of events mediating presynaptic NMDA receptor-dependent LTP at cortico-LA synapses. Here, we show that presynaptic cortico-LA LTP can be entirely accounted for by a persistent increase in the vesicular release probability. At the molecular level, we found that signaling via the cAMP/PKA pathway is necessary and sufficient for LTP induction. Moreover, by using mice lacking the active-zone protein and PKA target RIM1alpha (RIM1alpha(-/-)), we demonstrate that RIM1alpha is required for both chemically and synaptically induced presynaptic LTP. Further analysis of cortico-LA synaptic transmission in RIM1alpha(-/-) mice revealed a deficit in Ca(2+)-release coupling leading to a lower baseline release probability. Our results reveal the molecular mechanisms underlying the induction of presynaptic LTP at cortico-LA synapses and indicate that RIM1alpha-dependent LTP may involve changes in Ca(2+)-release coupling.


Assuntos
Tonsila do Cerebelo/fisiologia , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Potenciação de Longa Duração/fisiologia , Terminações Pré-Sinápticas/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao GTP/genética , Masculino , Camundongos , Camundongos Mutantes , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais , Transmissão Sináptica
8.
Cell Rep ; 37(12): 110133, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34936875

RESUMO

Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Canabinoides/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Receptores de Canabinoides/fisiologia , Sinapses/fisiologia , Animais , Astrócitos/citologia , Canais de Cálcio/fisiologia , Sinalização do Cálcio , Células Cultivadas , Hipocampo/metabolismo , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Transmissão Sináptica
9.
Neuron ; 105(5): 764-766, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32135087

RESUMO

In this issue of Neuron, Roth et al. (2020) report that the content of GluA1-containing AMPAR at spines and dendrites in vivo in the motor and visual cortex increases proportionally to the learning of a motor task. Visual cortex activity is necessary for increasing AMPAR content and learning in light.


Assuntos
Plasticidade Neuronal , Receptores de AMPA , Dendritos , Neurônios , Transporte Proteico
10.
Cell Rep ; 32(9): 108097, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877679

RESUMO

Cortical plasticity improves behaviors and helps recover lost functions after injury. However, the underlying synaptic mechanisms remain unclear. In mice, we show that trimming all but one whisker enhances sensory responses from the spared whisker in the barrel cortex and occludes whisker-mediated synaptic potentiation (w-Pot) in vivo. In addition, whisker-dependent behaviors that are initially impaired by single-whisker experience (SWE) rapidly recover when associated cortical regions remap. Cross-linking the surface GluA2 subunit of AMPA receptors (AMPARs) suppresses the expression of w-Pot, presumably by blocking AMPAR surface diffusion, in mice with all whiskers intact, indicating that synaptic potentiation in vivo requires AMPAR trafficking. We use this approach to demonstrate that w-Pot is required for SWE-mediated strengthening of synaptic inputs and initiates the recovery of previously learned skills during the early phases of SWE. Taken together, our data reveal that w-Pot mediates cortical remapping and behavioral improvement upon partial sensory deafferentation.


Assuntos
Plasticidade Neuronal/genética , Receptores de AMPA/metabolismo , Animais , Humanos , Camundongos , Privação Sensorial/fisiologia
11.
Elife ; 92020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33252331

RESUMO

Survival depends on the ability of animals to select the appropriate behavior in response to threat and safety sensory cues. However, the synaptic and circuit mechanisms by which the brain learns to encode accurate predictors of threat and safety remain largely unexplored. Here, we show that frontal association cortex (FrA) pyramidal neurons of mice integrate auditory cues and basolateral amygdala (BLA) inputs non-linearly in a NMDAR-dependent manner. We found that the response of FrA pyramidal neurons was more pronounced to Gaussian noise than to pure frequency tones, and that the activation of BLA-to-FrA axons was the strongest in between conditioning pairings. Blocking BLA-to-FrA signaling specifically at the time of presentation of Gaussian noise (but not 8 kHz tone) between conditioning trials impaired the formation of auditory fear memories. Taken together, our data reveal a circuit mechanism that facilitates the formation of fear traces in the FrA, thus providing a new framework for probing discriminative learning and related disorders.


Assuntos
Estimulação Acústica/efeitos adversos , Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Lobo Frontal/fisiologia , Aprendizagem/fisiologia , Animais , Cálcio/metabolismo , Condicionamento Clássico/fisiologia , Masculino , Camundongos , Microscopia Confocal , Plasticidade Neuronal/fisiologia , Optogenética , Técnicas de Patch-Clamp
12.
J Neurochem ; 109(1): 1-14, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19183273

RESUMO

Among mental disorders, mental retardation has been shown to be caused by various factors including a large array of genetic mutations. On the basis of remarkable progress, the emerging view is that defects in the regulation of synaptic activity and morphogenesis of dendritic spines are apparently common features associated with mutations in several genes implicated in mental retardation. In this review, we will discuss X-linked MR-related gene products that are potentially involved in the normal structure and function of the synapses, with a particular focus on pre- and/or post-synaptic plasticity mechanisms. Progress in understanding the underlying conditions leading to mental retardation will undoubtedly be gained from a closer collaboration of geneticists, physiologists and cognitive neuroscientists, which should enable the establishment of standardized approaches.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Plasticidade Neuronal , Sinapses/metabolismo , Animais , Espinhas Dendríticas/genética , Espinhas Dendríticas/metabolismo , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Mutação/genética , Plasticidade Neuronal/genética , Fenótipo , Sinapses/genética
13.
Eur J Neurosci ; 30(8): 1476-86, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19811529

RESUMO

Abnormalities in the formation and function of cerebellar circuitry potentially contribute to cognitive deficits in humans. In the adult, the activity of the sole output neurons of the cerebellar cortex - the Purkinje cells (PCs) - is shaped by the balance of activity between local excitatory and inhibitory circuits. However, how this balance is established during development remains poorly understood. Here, we investigate the role of interleukin-1 receptor accessory protein-like 1 (IL1RAPL1), a protein linked to cognitive function which interacts with neuronal calcium sensor 1 (NCS-1) in the development of mouse cerebellum. Using Il1rapl1-deficient mice, we found that absence of IL1RAPL1 causes a transient disinhibition of deep cerebellar nuclei neurons between postnatal days 10 and 14 (P10/P14). Upstream, in the cerebellar cortex, we found developmental perturbations in the activity level of molecular layer interneurons (MLIs), resulting in the premature appearance of giant GABAA-mediated inhibitory post-synaptic currents capable of silencing PCs. Examination of feed-forward recruitment of MLIs by parallel fibres shows that during this P10/P14 time window, MLIs were more responsive to incoming excitatory drive. Thus, we conclude that IL1RAPL1 exerts a key function during cerebellar development in establishing local excitation/inhibition balance.


Assuntos
Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Receptores de Interleucina/fisiologia , Anestésicos Locais/farmacologia , Animais , Animais Recém-Nascidos , Biofísica , Calbindinas , Estimulação Elétrica/métodos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Camundongos , Camundongos Knockout , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neurônios/efeitos dos fármacos , Neuropeptídeos/metabolismo , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp/métodos , Quinoxalinas/farmacologia , Receptores de Interleucina/deficiência , Proteína G de Ligação ao Cálcio S100/metabolismo , Tetrodotoxina/farmacologia
14.
Front Mol Neurosci ; 12: 238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611774

RESUMO

Intelligence is the ability to learn appropriate responses to stimuli and the capacity to master new skills. Synaptic integration at the dendritic level is thought to be essential for this ability through linear and non-linear processing, by allowing neurons to be tuned to relevant information and to maximize adaptive behavior. Showing that dendrites are able to generate local computations that influence how animals perceive the world, form a new memory or learn a new skill was a break-through in neuroscience, since in the past they were seen as passive elements of the neurons, just funneling information to the soma. Here, we provide an overview of the role of dendritic integration in improving the neuronal network and behavioral performance. We focus on how NMDA spikes are generated and their role in neuronal computation for optimal behavioral output based on recent in vivo studies on rodents.

16.
Brain Struct Funct ; 220(6): 3673-82, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25158900

RESUMO

The process of learning mainly depends on the ability to store new information, while the ability to retrieve this information and express appropriate behaviors are also crucial for the adaptation of individuals to environmental cues. Thereby, all three components contribute to the cognitive fitness of an individual. While a lack of behavioral adaptation is a recurrent trait of intellectually disabled patients, discriminating between memory formation, memory retrieval or behavioral expression deficits is not easy to establish. Here, we report some deficits in contextual fear behavior in knockout mice for the intellectual disability gene Il1rapl1. Functional in vivo experiments revealed that the lack of conditioned response resulted from a local inhibitory to excitatory (I/E) imbalance in basolateral amygdala (BLA) consecutive to a loss of excitatory drive onto BLA principal cells by caudal hippocampus axonal projections. A normalization of the fear behavior was obtained in adult mutant mice following opsin-based in vivo synaptic priming of hippocampo-BLA synapses in adult il1rapl1 knockout mice, indicating that synaptic efficacy at hippocampo-BLA projections is crucial for contextual fear memory expression. Importantly, because this restoration was obtained after the learning phase, our results suggest that some of the genetically encoded cognitive deficits in humans may originate from a lack of restitution of genuinely formed memories rather than an exclusive inability to store new memories.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Deficiência Intelectual/fisiopatologia , Proteína Acessória do Receptor de Interleucina-1/fisiologia , Animais , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Deficiência Intelectual/genética , Proteína Acessória do Receptor de Interleucina-1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sinapses/fisiologia , Potenciais Sinápticos
17.
Philos Trans R Soc Lond B Biol Sci ; 369(1633): 20130160, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24298161

RESUMO

Loss-of-function mutations in the gene encoding for the RhoGAP protein of oligophrenin-1 (OPHN1) lead to cognitive disabilities (CDs) in humans, yet the underlying mechanisms are not known. Here, we show that in mice constitutive lack of Ophn1 is associated with dysregulation of the cyclic adenosine monophosphate/phosphate kinase A (cAMP/PKA) signalling pathway in a brain-area-specific manner. Consistent with a key role of cAMP/PKA signalling in regulating presynaptic function and plasticity, we found that PKA-dependent presynaptic plasticity was completely abolished in affected brain regions, including hippocampus and amygdala. At the behavioural level, lack of OPHN1 resulted in hippocampus- and amygdala-related learning disabilities which could be fully rescued by the ROCK/PKA kinase inhibitor fasudil. Together, our data identify OPHN1 as a key regulator of presynaptic function and suggest that, in addition to reported postsynaptic deficits, loss of presynaptic plasticity contributes to the pathophysiology of CDs.


Assuntos
Proteínas do Citoesqueleto/deficiência , Proteínas Ativadoras de GTPase/deficiência , Deficiências da Aprendizagem/genética , Plasticidade Neuronal/fisiologia , Proteínas Nucleares/deficiência , Terminações Pré-Sinápticas/fisiologia , Transdução de Sinais/fisiologia , Animais , Western Blotting , Condicionamento Psicológico , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/genética , Estimulação Elétrica , Proteínas Ativadoras de GTPase/genética , Deficiências da Aprendizagem/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética
18.
Neuron ; 75(3): 490-502, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22884332

RESUMO

Functional maps in the cerebral cortex reorganize in response to changes in experience, but the synaptic underpinnings remain uncertain. Here, we demonstrate that layer (L) 2/3 pyramidal cell synapses in mouse barrel cortex can be potentiated upon pairing of whisker-evoked postsynaptic potentials (PSPs) with action potentials (APs). This spike-timing-dependent long-term potentiation (STD-LTP) was only effective for PSPs evoked by deflections of a whisker in the neuron's receptive field center, and not its surround. Trimming of all except two whiskers rapidly opened the possibility to drive STD-LTP by the spared surround whisker. This facilitated STD-LTP was associated with a strong decrease in the surrounding whisker-evoked inhibitory conductance and partially occluded picrotoxin-mediated LTP facilitation. Taken together, our data demonstrate that sensory deprivation-mediated disinhibition facilitates STD-LTP from the sensory surround, which may promote correlation- and experience-dependent expansion of receptive fields.


Assuntos
Potenciação de Longa Duração/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos , Neurônios/fisiologia , Estimulação Física , Privação Sensorial/fisiologia , Vibrissas/inervação
19.
Neuron ; 74(2): 214-7, 2012 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-22542175

RESUMO

In this issue of Neuron, Chen et al. (2012) and van Versendaal et al. (2012) used fluorescently tagged gephyrin to track inhibitory synapses in the mouse visual cortex in vivo. Their studies show that visual experience-dependent plasticity is associated with clustered and location-specific pruning of inhibitory synapses.

20.
PLoS One ; 7(1): e29763, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22291894

RESUMO

The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.


Assuntos
Tonsila do Cerebelo/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Terminações Pré-Sinápticas/metabolismo , Prosencéfalo/metabolismo , Transmissão Sináptica/genética , Fatores Etários , Tonsila do Cerebelo/fisiologia , Animais , Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/patologia , Feminino , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA