Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38190362

RESUMO

Sparassis crispa, also known as cauliflower mushroom, is a new popularly edible mushroom in China, also a medicinal mushroom, which possesses various biological activities, such as immunopotentiation, anti-diabetes, anti-cancer, and anti-inflammatory effects. (Han et al., 2018). In recent years, the artificial cultivation of S. crispa has gained considerable public attention in China. In 2023, approximately 20% of S. crispa (about 0.05 ha of the planting area) showed obvious rot with white molds symptoms in mushroom hothouse, located in Shuangliu county, Sichuan province, China (GPS, 104°7'51"N, 30°25'2"E). Infected fruiting bodies were covered by white mycelia that later turned red or fuchsia. In the final stages of infection, the S. crispa fruiting bodies turned dark red or brown before rotting. The pathogen was isolated from the margin of the lesions by plating onto potato dextrose agar (PDA), and incubated at 25℃ in the dark for a week. Five pure culture fungal isolates were obtained. Collected isolates with similar morphology were described as Lecanicillium spp. (Zare et al., 2001). The colonies were raised, covered with white, the reverse side were violet brown, produced diffusing reddish-purple pigment. Conidiogenous cells produced singly, in pairs, verticillate or in dense irregular clusters on prostrate hyphae, at first flask-shaped, tapering into threadlike neck, with a size of 3.0-6.2×0.8-2.2 µm. Conidia were solitary, oval to subglobose, and 2.3-4.0×1.1-2.1 µm in size, similar to L. aphanocladii (Higo et al., 2021). For pathogenicity testing, ten fruiting bodies of S. crispa (planted in the bottles) were selected. Fungal cake of the isolate Bx-Ljb of L. aphanocladii were applied to the fruiting body of S. crispa, whereas pieces of sterile PDA medium were used as controls. All the bottles were incubated at 19±1℃, 85-100% relative humidity, and 18 h of light in the mushroom hothouse. A week later, the inoculated fruiting bodies developed brown spots and gradually expanding, with symptoms similar to the original diseased fruiting bodies. The controls remained healthy. The same fungus was reisolated from the infected fruiting bodies and subsequently identified by morphological characteristics and DNA sequence analysis. The pathogenicity test was repeated three times with similar results. For molecular identification, the DNA of the isolates was extracted using a Fungi Genomic DNA Extraction kit (Solarbio, Beijing). The SSU, LSU, and TEF1-α genes were amplified with the primer as previously described (Zhou et al., 2018). The generated sequences were deposited in GenBank with accession numbers OR206377, OR206378, and OR204702, respectively. BLASTn analyses showed >99.2% identity with previously deposited sequences of L. aphanocladii. Based on the maximum likelihood method, phylogenetic analysis revealed 99% bootstrap support values with L. aphanocladii. The fungus was identified as L. aphanocladii based on morphological and multilocus phylogenetic analyses. To our knowledge, there are two reports of L. aphanocladii on fruiting bodies of Tremella fuciformis and Morchella sextelata in China, and this is the first report of this fungus causing rot of S. crispa in China. It may be a reminder that the risk of L. aphanocladii in mushroom production in China is gradually increasing. These results will contribute to developing managemental strategies for this disease in S. crispa.

2.
Plant Dis ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587796

RESUMO

Cauliflower mushroom (Sparassis latifolia), is widely distributed in Australia, North America, Europe, and East Asia (Bashir et al., 2020). It is known for its medicinal significance due to the availability of various pharmacological substances and their use in health supplements (Bashir et al., 2017). In recent years, with the development of artificial cultivation technology, S. latifolia has been industrialized in China, with an annual output value 50 million dollars. In March 2023, approximately 15% of S. latifolia showed obvious bacterial rot in mushroom hothouse (about 0.05 ha), located in Shuangliu county, Sichuan province, China (104°7'51"N, 30°25'2"E). The affected parts appear water-soaked, and become sunken and softened as the disease progresses. In the finally, all the fruiting body tissues turn into paste, with colors pale yellow, and have a foul smell. The pathogen was isolated from the margin of the lesions by dilution and streaking techniques onto Nutrient Agar, and incubated at 28℃ in the dark for 2-3 days. A single colony was re-streak for purification. Eight isolates were obtained from five samples collected randomly. The representative three isolates were selected for further characterization. For pathogenicity testing, ten health fruit bodies of S. latifolia were selected (for per isolate). Bacterial suspensions (1 × 107 CFU/ml) of the three isolates were applied to the fruiting body until wet, sterile water was used as controls. All the S. latifolia were maintained at 19±1℃, 85-100% relative humidity, and 18 h of light in the mushroom hothouse. Three days later, the inoculated fruiting bodies developed yellow color, and appear water-soaked, five days later, fruiting body gradually turn to soft and part turn to rot, seven days later, the fruiting body tissues completely turn into paste with a foul smell. The symptoms exhibited were similar to those of the original diseased fruiting bodies, while the control group remained healthy. The same bacterial were re-isolated from the infected fruiting bodies and subsequently identified by morphological characteristics and DNA sequenced. The pathogenicity test was conducted three times, each yielding similar results. The colonies of the pathogen are gram-negative rods, medium sized, convex, smooth, opaque, turning yellow after several days at a temperature 28℃. For molecular identification, the DNA of the representative three isolates was extracted using a Bacterial Genomic DNA Extraction Kit (Solarbio, Beijing). The 16S rRNA genes were amplified and sequenced with the primer 27F/1492R (Lane et al., 1985). Finally, the sequences were identical. The generated representative sequence was deposited in GenBank with accession number OR399122. BLASTn analysis showed 100% identity (1404/1404 bp) with previously deposited sequence (accession number CP068224) of S. multivorum FDAARGOS in GenBank. Based on the maximum likelihood method, phylogenetic analysis revealed 100% bootstrap support values with S. multivorum. Finally, the bacterium was identified as S. multivorum. This is the first report of S. multivorum causing bacterial rot of mushroom. The fruiting body of S. multivorum consists of multiple folded flat lobes, which are thin and have large surface area, may facilitate the infection of S. multivorum. Sphingobacterium sp. are named for their synthesize sphingolipids, which play an important role in bacterial infection (Kunz et al., 2019). These results will contribute to developing control strategies for this disease.

3.
Curr Issues Mol Biol ; 45(8): 6466-6484, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37623227

RESUMO

Atmospheric and room-temperature plasma (ARTP) is an efficient microbial mutagenesis method with broad application prospects. Compared to traditional methods, ARTP technology can more effectively induce DNA damage and generate stable mutant strains. It is characterized by its simplicity, cost-effectiveness, and avoidance of hazardous chemicals, presenting a vast potential for application. The ARTP technology is widely used in bacterial, fungal, and microalgal mutagenesis for increasing productivity and improving characteristics. In conclusion, ARTP technology holds significant promise in the field of microbial breeding. Through ARTP technology, we can create mutant strains with specific genetic traits and improved performance, thereby increasing yield, improving quality, and meeting market demands. The field of microbial breeding will witness further innovation and progress with continuous refinement and optimization of ARTP technology.

4.
Plant Dis ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227440

RESUMO

Banana Shrub (Michelia figo (Lour.) Spreng.) is widely cultivated in most of southern China (Wu et al, 2008). It can be used to make essential oil and flower tea(Ma et al, 2012; Li et al, 2010).The first symptoms were observed in Sept. 2020 at a grower's field in Banana shrub seedlings (0.6 ha), Ya'an city (29°30'N, 102°38'E), Hanyuan county. The symptoms re-occurred in May-June of 2021 and became prevalent from August to September. the incidence rate and the disease index were 40% and 22%, respectively. Initially, purplish-brown necrotic lesions appeared at the leaf tip with dark-brown edges. Progressively, necrosis spread, to the middle of the leaves, and the older area turned gray-white. Dark sunken lesions appeared in the necrotic areas and orange conidial masses were visible under humid conditions. Ten isolates were obtained on potato dextrose agar (PDA) from 10 leaf samples using previously described tissue isolation method (Fang et al. 1998). All the 10 isolates exhibited similar morphological characteristics. Grey to white aerial mycelium at the center and in dispersed tufts, with numerous dark conidiomata scattered over the surface, reverse was pale orange with numerous dark flecks corresponding to the ascomata, orange conidial masses were formed from mature conidiomata. Conidia were hyaline, smooth-walled, aseptate, straight, cylindrical, apex round, the contents appearing granular 14.8 to 17.2 × 4.2 to 6.4 µm (average: 16.26 × 4.84 µm, n=30) as Colletotrichum spp. (Damm et al. 2012). For molecular identification, DNA was extracted from a representative isolate HXcjA using a plant genomic DNA extraction kit (Solarbio, Beijing). and the partial sequences of internal transcribed spacer region (ITS, OQ641677), glyceraldehyde-3-phosphate dehydrogenase (GAPDH, OL614009), actin (ACT, OL614007), beta-tubulin (TUB2, OL614011), histone3 (HIS3, OL614010), and calmodulin (CAL, OL614008) were amplified and sequenced using the primer pairs ITS1/ITS4 (White et al. 1990), GDF/GDR (Templeton et al. 1992), ACT-512F/ACT-783R, CAL 228F/CAL 737R (Carbone et al. 1999), TUB1F/Bt2bR, CYLH3F/CYLH3R (Crous et al. 2004), respectively. BLASTn analysis for ITS, GAPDH, CAL, ACT, TUB2 and HIS3 sequences showed ≥99.7% identity to C. Karstii, namely, NR_144790 (532/532 bp), MK963048 (252/252 bp), MK390726 (431/431 bp), MG602039 (761/763 bp), (KJ954424, 294/294 bp), (KJ813519, 389/389 bp), respectively. The fungus was identified as C. karstii based on morphology and a multigene phylogeny. The conidial suspension (1 × 107 conidia/mL) with 0.05% Tween 80 buffer was used for pathogenicity test, by spraying 2-year-old Banana Shrub plants. Ten plants were inoculated with spore suspensions (approximately 2ml per plant). An equal number of plants were sprayed with 0.05% Tween 80 buffer to serve as a control. Fifteen days later, the inoculated plants showed similar symptoms as the original diseased plants but the controls remained asymptomatic. C. karstii was re-isolated from the infected leaves and identified by morphology and a multigene phylogeny. The pathogenicity test was repeated three times with similar results, confirming Koch's postulates. To our knowledge, this is the first report of Banana Shrub leaf blight caused by C. karstii in China. This disease reduces the ornamental and economic value of Banana Shrub, and this work will provide a basis for the prevention and treatment of the disease in the future.

5.
Can J Microbiol ; 67(4): 281-289, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33591216

RESUMO

The growth of the well-known fungus Ganoderma lucidum is influenced by temperature, which has an impact on the associated microbial structure in the substrate. In this study, we analyzed the bacterial diversity of the substrate at different temperatures using next-generation sequencing technology. A total of 513 733 sequences from 15 samples were assigned to 19 bacterial phyla. The samples were dominated by Proteobacteria, followed by Firmicutes; the 2 phyla exhibited opposite changes with elevated temperature. Bacterial genera showed different abundances at different temperatures, in which Sediminibacterium maintained a stable abundance below 40 °C, while Ochrobactrum and Rhodococcus were enriched with elevated temperature and both showed their highest abundances at 40 °C. Functional prediction uncovered 39 identified KEGG pathways, and bacterial genes involved in the membrane transport pathway exhibited the highest abundance subject to heat (40 °C) during the growth of G. lucidum. In general, our findings illustrated the influence of temperatures on G. lucidum mycelial morphology and the bacterial community in the substrate, and the results will facilitate cultivation of this fungus.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Reishi/crescimento & desenvolvimento , Temperatura , Bactérias/classificação , Bactérias/genética , Meios de Cultura , Temperatura Alta , Hifas/crescimento & desenvolvimento
6.
Environ Microbiol ; 21(10): 3909-3926, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314937

RESUMO

The black morel (Morchella importuna Kuo, O'Donnell and Volk) was once an uncultivable wild mushroom, until the development of exogenous nutrient bag (ENB), making its agricultural production quite feasible and stable. To date, how the nutritional acquisition of the morel mycelium is fulfilled to trigger its fruiting remains unknown. To investigate the mechanisms involved in ENB decomposition, the genome of a cultivable morel strain (M. importuna SCYDJ1-A1) was sequenced and the genes coding for the decay apparatus were identified. Expression of the encoded carbohydrate-active enzymes (CAZymes) was then analyzed by metatranscriptomics and metaproteomics in combination with biochemical assays. The results show that a diverse set of hydrolytic and redox CAZymes secreted by the morel mycelium is the main force driving the substrate decomposition. Plant polysaccharides such as starch and cellulose present in ENB substrate (wheat grains plus rice husks) were rapidly degraded, whereas triglycerides were accumulated initially and consumed later. ENB decomposition led to a rapid increase in the organic carbon content in the surface soil of the mushroom bed, which was thereafter consumed during morel fruiting. In contrast to the high carbon consumption, no significant acquisition of nitrogen was observed. Our findings contribute to an increasingly detailed portrait of molecular features triggering morel fruiting.


Assuntos
Ascomicetos/genética , Ascomicetos/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Proteoma/genética , Agricultura , Sequência de Bases , Nutrientes , Polissacarídeos/metabolismo
7.
Arch Virol ; 163(7): 1977-1980, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29541847

RESUMO

We isolated a Pseudomonas phage infecting Pseudomonas fluorescens SA1 separated from a soil sample collected in Sichuan Province, China. This phage, which we named PPSC2, has a genome that is composed of a 97,330-bp-long linear double-stranded DNA with 47.51% G+C content and 168 putative protein-coding genes. We identified 20 tRNA genes in the genome of PPSC2, and the tRNA GC content ranged from 44.2% to 58.4%. Phylogenetic and BLASTn analysis revealed that the Pseudomonas phage PPSC2 should be considered a new member of the family Myoviridae.


Assuntos
Genoma Viral , Fagos de Pseudomonas/genética , Microbiologia do Solo , Composição de Bases , China , DNA Viral/genética , Genômica , Myoviridae/genética , Fases de Leitura Aberta , Filogenia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/isolamento & purificação , RNA de Transferência/genética , Análise de Sequência de DNA
8.
BMC Microbiol ; 17(1): 139, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651582

RESUMO

BACKGROUND: The internal transcribed spacer (ITS), RNA polymerase II second largest subunit (RPB2), and elongation factor 1-alpha (EF1α) are often used in fungal taxonomy and phylogenetic analysis. As we know, an ideal molecular marker used in molecular identification and phylogenetic studies is homogeneous within species, and interspecific variation exceeds intraspecific variation. However, during our process of performing ITS, RPB2, and EF1α sequencing on the Pleurotus spp., we found that intra-isolate sequence polymorphism might be present in these genes because direct sequencing of PCR products failed in some isolates. Therefore, we detected intra- and inter-isolate variation of the three genes in Pleurotus by polymerase chain reaction amplification and cloning in this study. RESULTS: Results showed that intra-isolate variation of ITS was not uncommon but the polymorphic level in each isolate was relatively low in Pleurotus; intra-isolate variations of EF1α and RPB2 sequences were present in an unexpectedly high amount. The polymorphism level differed significantly between ITS, RPB2, and EF1α in the same individual, and the intra-isolate heterogeneity level of each gene varied between isolates within the same species. Intra-isolate and intraspecific variation of ITS in the tested isolates was less than interspecific variation, and intra-isolate and intraspecific variation of RPB2 was probably equal with interspecific divergence. Meanwhile, intra-isolate and intraspecific variation of EF1α could exceed interspecific divergence. These findings suggested that RPB2 and EF1α are not desirable barcoding candidates for Pleurotus. We also discussed the reason why rDNA and protein-coding genes showed variants within a single isolate in Pleurotus, but must be addressed in further research. CONCLUSIONS: Our study demonstrated that intra-isolate variation of ribosomal and protein-coding genes are likely widespread in fungi. This has implications for studies on fungal evolution, taxonomy, phylogenetics, and population genetics. More extensive sampling of these genes and other candidates will be required to ensure reliability as phylogenetic markers and DNA barcodes.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Fator 1 de Elongação de Peptídeos/genética , Pleurotus/classificação , RNA Polimerase II/genética , Clonagem Molecular , DNA Fúngico/genética , Filogenia , Pleurotus/genética , Polimorfismo Genético , Reprodutibilidade dos Testes , Proteínas Ribossômicas/genética , Análise de Sequência de DNA/métodos , Especificidade da Espécie
9.
Curr Microbiol ; 74(8): 943-951, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28555376

RESUMO

Auricularia polytricha is one of the most widely cultivated edible mushrooms in China. Many advances have been made to A. polytricha, but there is still no proteomic information of this species. Our current understanding was based upon the translated information of its transcriptome or other relative species. This study presented the proteomic information of fruiting-body proteins by shotgun liquid chromatography and tandem mass spectrometry (LC-MS/MS), which identified 15,508 peptides corresponding to 1850 high-confidence proteins. Of these, 1383 were annotated across the GO subcategories with 829 (44.81%) involved in biological process, 908 (49.08%) in molecular function, and 406 (21.95%) in cellular components. Among these high-confidence proteins, 132 proteins were annotated as carbohydrate-active enzymes, of which 51 were secreted enzymes. Moreover, a number of commercially important enzymes were detected, functioning as auxiliary activity (AA) family 5 glyoxal oxidase, AA5 galactose oxidase, glycoside hydrolase (GH) family 20 hexosaminidase, and GH47 alpha-mannosidase. To the best of our knowledge, this is the first study to characterize A. polytricha proteome, and also fills the gap of our knowledge on the under-developed mushroom species.


Assuntos
Basidiomycota/química , Carpóforos/química , Proteínas Fúngicas/análise , Proteoma/análise , China , Cromatografia Líquida , Anotação de Sequência Molecular , Proteômica , Espectrometria de Massas em Tandem
10.
Mol Biol Rep ; 43(6): 573-82, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27075657

RESUMO

The aims of this study are to assess the utility of the internal transcribed spacer (ITS) region, and partial translation elongation factor (EF1α) and RNA polymerase II (RPB2) genes, for differentiation of Bailinggu, P. eryngii, and P. nebrodensis; to reconstruct phylogenetic relationships between the three species; and to confirm the taxonomic status of Bailinggu based on ribosomal and protein-coding genes. Pairwise genetic distances between Bailinggu, P. eryngii, and related Pleurotus strains were calculated by using the p-distance model, and molecular phylogeny of these isolates was estimated based on ITS, RPB2, and EF1α using maximum parsimony and Bayesian methods. Differences in ITS, RPB2, and EF1α sequences show that Bailinggu, P. eryngii, and P. nebrodensis are distinct at the species level. Phylogenetic analyses reveal that P. eryngii is closer to P. nebrodensis than to Bailinggu. Sequence analyses of ribosomal and protein-coding genes confirm that P. eryngii var. tuoliensis is identical to Bailinggu. P. eryngii var. tuoliensis should be raised to species level or a new name should be introduced for Bailinggu after a thorough investigation into Pleurotus isolates from Ferula in Xinjiang Province. This study helps to resolve uncertainty regarding Bailinggu, P. eryngii and P. nebrodensis, improving the resource management of these strains. ITS, EF1α, and RPB2 sequences can be used to distinguish Bailinggu, P. eryngii and P. nebrodensis as three different species, and P. eryngii var. tuoliensis should be the scientific name for Bailinggu at present.


Assuntos
DNA Espaçador Ribossômico/genética , Proteínas Fúngicas/genética , Fator 1 de Elongação de Peptídeos/genética , Pleurotus/genética , RNA Polimerase II/genética , Sequência de Bases , China , DNA Fúngico/genética , Genes Fúngicos , Tipagem de Sequências Multilocus , Filogenia
11.
Appl Microbiol Biotechnol ; 100(5): 2225-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26536874

RESUMO

Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 µmol P/min/mg at 37 °C and 4135 µmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.


Assuntos
6-Fitase/metabolismo , Fungos/enzimologia , Temperatura Alta , Metagenoma , 6-Fitase/química , 6-Fitase/genética , Animais , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Fungos/genética , Fungos/crescimento & desenvolvimento , Expressão Gênica , Insetos/microbiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Antonie Van Leeuwenhoek ; 106(3): 515-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25035061

RESUMO

Chinese medicinal plants and their surrounding rhizospheric soil serve as promising sources of actinobacteria. A total of 180 actinobacteria strains were isolated from the rhizosphere soil, leaves, stems, and roots of nine selected plants and have been identified as potential biocontrol agents against Fusarium oxysporum f. sp. cucumerinum. An endophytic strain CNS-42 isolated from Alisma orientale showed the largest zone of inhibition demonstrating a potent effect against F. oxysporum f. sp. cucumerinum and a broad antimicrobial activity against bacteria, yeasts, and other pathogenic fungi. The in vivo biocontrol assays showed that the disease severity index was significantly reduced (P < 0.05), and plant shoot fresh weight and height increased greatly (P < 0.05) in plantlets treated with strain CNS-42 compared to the negative control. This isolate was identified as Streptomyces sp. based on cultural, physiological, morphological characteristics, and 16S rRNA gene analysis. Further bioassay-guided isolation and purification revealed that staurosporine was responsible for its antifungal and plant growth promoting activities and the latter property of staurosporine is reported for the first time. The in vivo assay was further performed and indicated that staurosporine showed good growth promoting effect on the plant shoot biomass of cucumber. This is the first critical evidence identifying CNS-42 as a biocontrol agent for the soil borne pathogen, F. oxysporum f. sp. cucumerinum.


Assuntos
Antibiose , Antifúngicos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Estaurosporina/farmacologia , Streptomyces/fisiologia , Antifúngicos/isolamento & purificação , Cucumis sativus/microbiologia , Cucumis sativus/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Controle Biológico de Vetores/métodos , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/isolamento & purificação , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Estaurosporina/isolamento & purificação , Streptomyces/química , Streptomyces/classificação , Streptomyces/isolamento & purificação
13.
Microorganisms ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38543569

RESUMO

This study focuses on optimizing the mutagenesis process for Morchella eximia (Mel-7) mycelia through atmospheric and room temperature plasma (ARTP) mutation and explores the resultant thermal adaptability and physiological responses of mutant strains. This research demonstrated a clear relationship between ARTP mutagenesis exposure duration and lethality rate, indicating that an exposure time of 40 s resulted in the optimal balance of inducing mutations without causing excessive mortality. Additionally, this study established 43 °C as the ideal screening temperature for identifying mutant strains with enhanced heat resistance, as this temperature significantly challenges the mycelia while allowing thermotolerant strains to be distinguishable. Among the screened mutants, strains L21, L23, L44, and L47 exhibited superior growth and high-temperature tolerance, with notable resilience at 30 °C, highlighting their enhanced adaptability to above-optimal temperatures. Furthermore, this research delved into biochemical responses, including lipid peroxidation and non-enzymatic antioxidant content, highlighting the diverse mechanisms, such as enhanced lipid peroxidation resistance and increased antioxidant content, employed by mutant strains to adapt to temperature fluctuations. The activities of antioxidant enzymes, including peroxidase (POD) and superoxide dismutase (SOD), were shown to be significantly influenced by temperature elevations, illustrating their critical roles in the thermal adaptation of mutant strains. These findings shed light on the importance of considering mutation duration and temperature screening in the development of thermotolerant fungal strains with potential applications in various industries. This study's breakthrough lies in its comprehensive understanding of the thermal adaptability of Mel-7 mycelia and the identification of promising mutant strains, offering valuable insights for both academic and industrial purposes.

14.
Int J Med Mushrooms ; 26(9): 65-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39093402

RESUMO

To study and compare the morphology of the phellinoid Agaricomycetes strains and find other strategies to improve Phellinus spp. growth and metabolism. In this study, the morphological characteristics of four Phellinus igniarius strains (phellinoid Agaricomycetes) were observed under a light microscope. The exudates from these fungi were observed using light microscopy, scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). The exudates were initially transparent with a water-like appearance, and became darker with time at neutral pH. Microscopy of air-dried exudates revealed regular shapes and crystals. Cl- (chloride) and K+ were the two key elements analyzed using EDS. Polyphenol oxidase (POD), catalase (CAT), and laccase activities were detected in mycelia from each of the four Phellinus strains. The K+ content of the three strains was higher than that of the wild strain. Cl- content correlated negatively with that of K+. Laccase activities associated with each mycelia and its corresponding media differed under cold and contaminated conditions.


Assuntos
Basidiomycota , Lacase , Microscopia Eletrônica de Varredura , Micélio , Lacase/metabolismo , Basidiomycota/enzimologia , Basidiomycota/química , Micélio/química , Catalase/metabolismo , Catecol Oxidase/metabolismo , Potássio/metabolismo , Cloretos/metabolismo
15.
Int J Med Mushrooms ; 26(2): 71-85, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421697

RESUMO

A mutant Phellinus igniarius JQ9 with higher mycelial production was screened out by He-Ne laser with pulsed light irradiation, the mechanism underlying the higher mycelial production is still unknown. This study aims to obtain a comprehensive transcriptome assembly during the Ph. igniarius liquid fermentation and characterize the key genes associated with the mycelial growth and metabolism in Ph. igniarius JQ9. Our transcriptome data of Ph. iniarius JQ9 and the wild strain were obtained with the Illumina platform comparative transcriptome sequencing technology. The results showed that among all the 346 differentially expressed genes (DEGs), 245 were upregulated and 101 were downregulated. Candidate genes encoding endoglucanase, beta-glucosidase, cellulose 1,4-beta-cellobiosidase, glycoside hydrolase family 61 protein, were proposed to participate in the carbohydrate utilization from KEGG enrichment of the starch and sucrose metabolism pathways were upregulated in Ph. igniarius JQ9. In addition, three candidate genes encoding the laccase and another two candidate genes related with the cell growth were higher expressed in Ph. igniarius JQ9 than in the wild type of strain (CK). Analysis of these data revealed that increased these related carbohydrate metabolism candidate genes underlying one crucial way may cause the higher mycelia production.


Assuntos
Basidiomycota , Transcriptoma , Phellinus , Perfilação da Expressão Gênica , Lasers
16.
Heliyon ; 10(1): e23370, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38234922

RESUMO

Phellinus spp. have historically been used as traditional medicines to treat various diseases owing to their antioxidant, antitumor, and antidiabetic activities. Polysaccharides exhibit antidiabetic activity. In the present study, the polysaccharide contents of four Phellinus strains were compared. Phellinus igniarius QB72 possessed higher polysaccharide production, stronger 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and α-amylase inhibitory activity. The three polysaccharides were sequentially extracted and partially purified from the fermentation mycelia using hot water, 1 % (NH4)2C2O4, and 1.25 M NaOH. Hot water extract polysaccharides exhibited higher DPPH radical scavenging and strong inhibitory activity against α-amylase with an IC50 value of 6.84 ± 0.37 mg/mL. The carbohydrate content of A1 (approximately 17457 Da) was approximately 88.28 %. The α-amylase inhibitory activity IC50 was decreased (3.178 ± 0.187 mg/mL) after DEAE water elution. P. igniarius QB72 hot-water extracts of partially purified polysaccharides have great potential as α-amylase inhibitors in food and medication-assisted additives.

17.
Int J Med Mushrooms ; 26(5): 59-71, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38780423

RESUMO

To fully utilize Phellinus igniarius fermentation mycelia, the present study investigated the in vitro antioxidant and α-amylase inhibitory properties of four Ph. igniarius strains. Organic solvents were used to extract fatty acids, phenolics, and flavonoids from the selected mushrooms. The composition and bioactivity of the extracts were evaluated. The lipid yield obtained using petroleum ether (7.1%) was higher than that obtained using 1:1 n-hex-ane+methanol (5.5%) or 2:1 dichloromethane+methanol (3.3%). The composition and relative content of saturated and unsaturated fatty acids in the petroleum ether extract were higher than those in other solvent extracts. Furthermore, ethyl acetate extracts had higher flavonoid and phenolic content and better antioxidant activity than other extracts; however, the 70% ethanol extracts had the best α-amylase inhibitory activity. The supernatant from the ethanol precipitation of aqueous and 1% (NH4)2C2O4 extracts could also be biocompound sources. This comparative study is the first highlighting the in vitro antioxidant and α-amylase inhibitory properties of the four strains of Ph. igniarius extracts prepared using different organic solvents, which makes the investigated species and extracts promising for biological application.


Assuntos
Antioxidantes , Flavonoides , Micélio , Fenóis , alfa-Amilases , Antioxidantes/farmacologia , Antioxidantes/química , alfa-Amilases/antagonistas & inibidores , Micélio/química , Flavonoides/farmacologia , Flavonoides/análise , Flavonoides/química , Fenóis/farmacologia , Fenóis/química , Fenóis/análise , Ácidos Graxos/análise , Ácidos Graxos/química , Solventes/química , Basidiomycota/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Fermentação
18.
Curr Res Food Sci ; 7: 100591, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731940

RESUMO

Hypsizygus marmoreus is an edible medicinal mushroom species with a high dietary value. The main purpose of this study was to evaluate the nutritional value, umami taste, and volatile organic compounds (VOCs) of H. marmoreus treated with hot water combined with simulated salivary digestion in vitro. Seafood mushroom (Hm3) had the highest content of moisture, soluble polysaccharides, soluble proteins, and total flavonoids while white Hypsizygus marmoreus (Hm1) had the highest total phenolic content. Moreover, Hm1 had a more noticeable equivalent umami concentration (EUC) value, indicating the umami properties of Hm1 as a food or processing ingredient. Results from E-nose and HS-SPME-GC-MS revealed that the VOCs of Hm1 and brown Hypsizygus marmoreus (Hm2) were relatively similar, which differed substantially from Hm3. Among the 134 VOCs, 24 differential metabolites were identified by OPLS-DA analysis, characterized by VIP > 1, p-value < 0.05, and FC > 2 (pairwise comparisons). Furthermore, 10 biomarkers with VIP > 1 and p-value < 0.05 were identified by PLS-DA analysis based on the total differential metabolites to distinguish different strains of H. marmoreus. These results will benefit future research on the chemistry of H. marmoreus and serve as a guide for breeding, introducing, and using the species more effectively.

19.
Int J Med Mushrooms ; 25(8): 1-17, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560886

RESUMO

Mushrooms are full of nutrition and have beneficial properties for human health. Polysaccharides are the main component of edible and medicinal mushrooms, especially ß-glucans, which have attracted much more attention for their complex structure and diverse biological activities. Among all the diverse medicinal activities of mushroom polysaccharides, antitumor and immune-enhancing activities are two excellent bioactivities that have much more potential and deserve application. Their bioactivities are highly dependent on their structural features, including molecular weight, monosaccharide composition, degree of branching, type and configuration of glycosidic bonds, substituent pattern, and chain conformation. This review summarizes the current method for obtaining polysaccharides from mushrooms, chemical characterizations of the structures and their roles in immune and antitumor activities. In addition, the methods for preparation of the polysaccharide derivatives and the potential medicinal clinical application are also discussed in this review, which may provide new guidance for mushroom polysaccharide development.


Assuntos
Agaricales , beta-Glucanas , Humanos , Agaricales/química , Polissacarídeos/farmacologia , Polissacarídeos/química , beta-Glucanas/química , Peso Molecular , Monossacarídeos
20.
Int J Med Mushrooms ; 25(12): 55-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37947064

RESUMO

This research aimed to use a novel and effective ultrasound (US) approach for obtaining high bio-compound production, hence proposing strategies for boosting active ingredient biosynthesis. Furthermore, the US promotes several physiological effects on the relevant organelles in the cell, morphological effects on the structure of Phellinus igniarius mycelium, and increases the transfer of nutrients and metabolites. One suitable US condition for flavonoid fermentation was determined as once per day for 7-9 days at a frequency 22 + 40 kHz, power density 120 W/L, treated 10 min, treatment off time 7 s. The flavonoid content and production increased about 47.51% and 101.81%, respectively, compared with the untreated fermentation (P < 0.05). SEM showed that sonication changes the morphology and structure of Ph. igniarius mycelium; TEM reveals the ultrasonic treatment causes organelle aggregation. The ultrasound could affect the metabolism of the biosynthesis of the active ingredients.


Assuntos
Agaricales , Basidiomycota , Salix , Agaricales/química , Flavonoides/análise , Fermentação , Basidiomycota/química , Micélio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA