Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(6): 2984-2997, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38306608

RESUMO

Most aquatic plants applied to ecological restoration have demonstrated a clonal growth pattern. The risk-spreading strategy plays a crucial role in facilitating clonal plant growth under external environmental stresses via clonal integration. However, the effects of different concentrations of nanoplastics (NPs) on the growth traits of clonal aquatic plants are not well understood. Therefore, this study aimed to investigate the impact of NPs exposure on seedlings of parent plants and connected offspring ramets. A dose response experiment (0.1, 1, and 10 mg L-1) showed that the growth of Eichhornia crassipes (water hyacinth) was affected by 100 nm polystyrene nanoplastics after 28 days of exposure. Tracer analysis revealed that NPs are accumulated by parent plants and transferred to offspring ramets through stolon. Quantification analysis showed that when the parent plant was exposed to 10 mg L-1 NPs alone for 28 days, the offspring ramets contained approximately 13 ± 2 µg/g NPs. In the case of connected offspring ramets, leaf and root biomass decreased by 24%-51% and 32%-51%, respectively, when exposed to NP concentrations ranging from 0.1 to 10 mg L-1. Excessive enrichment of NPs had a detrimental effect on the photosynthetic system, decreasing the chlorophyll content and nonphotochemical quenching. An imbalance in the antioxidant defense systems, which were unable to cope with the oxidative stress caused by NP concentrations, further damaged various organs. The root system can take up NPs and then transfer them to the offspring through the stolon. Interference effects of NPs were observed in terms of root activity, metabolism, biofilm composition, and the plant's ability to purify water. However, the risk-spreading strategy employed by parent plants (interconnected offspring ramets) offered some relief from NP-induced stress, as it increased their relative growth rate by 1 to 1.38 times compared to individual plants. These findings provide substantial evidence of the high NP enrichment capacity of E. crassipes for ecological remediation. Nevertheless, we must also remain aware of the environmental risk associated with the spread of NPs within the clonal system of E. crassipes, and contaminated cloned individuals need to be precisely removed in a timely manner to maintain normal functions.


Assuntos
Microplásticos , Fotossíntese , Humanos , Clorofila , Biomassa , Plantas/metabolismo
2.
Environ Monit Assess ; 193(12): 781, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750699

RESUMO

To manage eutrophication of reservoirs, it is important to consider the potential for unexpected releases of organic phosphorus (OP) from areas around the reservoir where the water level fluctuates. In this study, we investigated the absorption and release of OP from a riparian soil/sediment from the Miyun Reservoir under fluctuating water levels using laboratory simulations. The total organic phosphorus (TOP) content in the soils/sediments ranged from 250.76 to 298.62 mg/kg, which accounted for between 5.6 and 38.5% of the total phosphorus (TP) content. We measured three OP fractions and found that the concentration of moderately labile OP (MLOP) was the highest, followed by labile OP (LOP), and the concentration of non-labile OP (NLOP) was the lowest. As the soils and sediments dried, they adsorbed phosphorus (P). The inorganic phosphorus (IP) contents were significantly and negatively correlated with the LOP and MLOP contents, indicating exchange between IP with these two fractions when the concentrations of bioavailable phosphorus in the soil are low. During flooding, the physicochemical properties varied at the sediment-water interface, inducing the release of Fe/Al-P. Some of the LOP and MLOP in the sediments were mineralized to IP. Our results suggest that when there are external P inputs, P may be released when sediments around a reservoir are subjected to wetting and drying as water levels fluctuate, which may cause P enrichment in reservoirs, especially in areas with poor water exchange.


Assuntos
Solo , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Água , Poluentes Químicos da Água/análise
3.
J Hazard Mater ; 476: 135146, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38991643

RESUMO

The pathway for pollutant degradation involving reactive oxygen species (ROS) in the rhizosphere is poorly understood. Herein, a rootchip system was developed to pinpoint the ROS hotspot along the root tip of Iris tectorum. Through mass balance analysis and quenching experiment, we revealed that ROS contributed significantly to rhizodegradation for beta-blockers, ranging from 22.18 % for betaxolol to 83.83 % for atenolol. The identification of degradation products implicated ROS as an important agent to degrade atenolol into less toxic transformation products during phytoremediation. Moreover, an active production of ROS in rhizosphere was identified by mesocosm experiment. Across three root-associated regions aquatic plants inhabiting the rhizosphere accumulated the highest •OH of ∼1200 nM after 3 consecutive days, followed by rhizoplane (∼230 nM) and bulk environment (∼60 nM). ROS production patterns were driven by rhizosphere chemistry (Fe and humic substances) and microbiome variations in different rhizocompartments. These findings not only deepen understanding of ROS production in aquatic plants rhizosphere but also shed light on advancing phytoremediation strategies.


Assuntos
Antagonistas Adrenérgicos beta , Biodegradação Ambiental , Espécies Reativas de Oxigênio , Rizosfera , Poluentes Químicos da Água , Espécies Reativas de Oxigênio/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Poluentes Químicos da Água/metabolismo , Gênero Iris/metabolismo , Raízes de Plantas/metabolismo , Microbiota
4.
Sci Total Environ ; 949: 174961, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067584

RESUMO

The potential ecological risk of per- and polyfluorinated alkyl substances (PFASs) in phytoremediation has raised social concerns, promoting a need to better understand their distribution and risks in the recovery process of aquatic plants. Herein, we aim to fill this knowledge gap by investigating the distribution and ecotoxicological effects of PFASs on the structure and function of water-macrophyte-sediment microcosm systems. Among the entire system, 63.0 %-73.1 % PFOA was found in sediments and submerged plants, however, 52.5 %-53.0 % of PFPeA and 47.0 %-47.5 % of PFBS remained in the water under different treatments. PFOA was more bioavailable than the other substances, as demonstrated by the bioaccumulation factors (BAF) with ranges exposed to PFPeA and PFBS. Bioaccumulation PFASs induced plant oxidative stress which generates enzymes to suppress superoxide, and disturbed the processes of lysine biosynthesis, in which allysine, meso-2,6-diaminoheptanedioate, and Nsuccinyl-2-amino-6-ketopimelate were downregulated. PFASs were detected in the propagator (turions) of an ecological restoration species, where short-chain PFASs (70.1 % and 45.7 % for 2 or 20 µg/L PFAS exposure, respectively) were found to spread further into new individuals and profoundly influence ecological processes shaping populations. PFASs significantly enhanced the number of microbial species in the sediment, but the degree of differentiation in the microbial community structure was not significantly different. This study enhances our understanding of the ecological mechanisms of PFASs in the water-macrophyte-sediment systems and potential threats to the recovery process of macrophytes.


Assuntos
Biodegradação Ambiental , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fluorocarbonos/metabolismo , Plantas/metabolismo , Plantas/efeitos dos fármacos , Hidrocarbonetos Fluorados/metabolismo , Sedimentos Geológicos/química
5.
Water Res ; 214: 118191, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219185

RESUMO

Increasing microplastic (MP) pollution and its effects on aquatic systems have become a global issue; however, the impact of MPs on biogeochemical cycles is poorly understood. A simulation study was performed to analyse the influence of polyethylene (PE) microplastics on the morphological, physiological, and stoichiometric (C, N, P) characteristics of submerged plants, and to investigate their effects on the nutrient cycle and microbial community in freshwater sediment. The results showed that PE-MPs treatments significantly decreased leaf nitrogen and carbon contents. Exposure to 1% PE-MPs suppressed the plant height, total biomass, root activity, and relative growth rate of Vallisneria natans. Decrease in dissolved oxygen (DO) concentrations (19.93-40.26%) were observed in the 1% PE-MPs treatment group compared to that in the control between 1 and 6 days. The activities of enzymes (ammonia monooxygenase and nitrate reductase) related to the nitrogen cycle were significantly altered by the addition of PE-MPs. We found that PE-MPs acted as obstacle disruptors, resulting in a reduction in the release of nitrogen and phosphorus from the sediment to the overlying water. This is because PE-MPs significantly alter the composition and metabolic properties of the microbial communities in sediments, the plant growth, and the nutrient cycle. These findings helped evaluate the impacts of PE-MPs on the water-plant-sediment system and on the biogeochemical cycles of the freshwater ecosystems.

6.
Chemosphere ; 269: 128702, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33162161

RESUMO

Biogeochemical hotspots of nitrogen cycling such as ammonia oxidation commonly occur in riparian ecosystems. However, the responses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to water-level fluctuations (WLF) in riparian zones remain unclear. In this study, two patterns of WLF (gradual waterlogging and drying) were investigated in a 9-month column experiment, and the abundances and activities of AOA and AOB were investigated. The recovery evaluation revealed AOB abundance had not returned to the initial level at the end of the experiment, while AOA abundance had recovered nearly completely. AOA outnumbered AOB at almost all depths, and AOA showed higher resistance and adaptation to WLF than AOB. However, higher microbial abundance was not always linked to the larger contribution to nitrification. Changes in environmental parameters such as moisture and dissolved oxygen caused by WLF instead of ammonia-oxidizing microorganism (AOM) abundance might play a key role in regulating the expression of amoA gene and thus the activity of ammonia oxidizers. In addition, the community structure of AOM evolved over the incubation period. The composition of AOA species in sediment changed in the same way as that in soil, and the Nitrosopumilus cluster showed strong resistance to WLF. Conversely, waterlogging changed the community structure of AOB in soil while drying had no significant effect on the AOB community structure in sediment. This study suggests that the ammonia oxidizers will respond to WLF and eventually affect N fate in riparian ecosystems considering the coupling with other N transformation processes.


Assuntos
Amônia , Ecossistema , Amônia/análise , Archaea/genética , Nitrificação , Oxirredução , Filogenia , Solo , Microbiologia do Solo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA