Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(5): e1012075, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768230

RESUMO

Tracking body parts in behaving animals, extracting fluorescence signals from cells embedded in deforming tissue, and analyzing cell migration patterns during development all require tracking objects with partially correlated motion. As dataset sizes increase, manual tracking of objects becomes prohibitively inefficient and slow, necessitating automated and semi-automated computational tools. Unfortunately, existing methods for multiple object tracking (MOT) are either developed for specific datasets and hence do not generalize well to other datasets, or require large amounts of training data that are not readily available. This is further exacerbated when tracking fluorescent sources in moving and deforming tissues, where the lack of unique features and sparsely populated images create a challenging environment, especially for modern deep learning techniques. By leveraging technology recently developed for spatial transformer networks, we propose ZephIR, an image registration framework for semi-supervised MOT in 2D and 3D videos. ZephIR can generalize to a wide range of biological systems by incorporating adjustable parameters that encode spatial (sparsity, texture, rigidity) and temporal priors of a given data class. We demonstrate the accuracy and versatility of our approach in a variety of applications, including tracking the body parts of a behaving mouse and neurons in the brain of a freely moving C. elegans. We provide an open-source package along with a web-based graphical user interface that allows users to provide small numbers of annotations to interactively improve tracking results.


Assuntos
Biologia Computacional , Animais , Camundongos , Biologia Computacional/métodos , Caenorhabditis elegans/fisiologia , Imageamento Tridimensional/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Aprendizado Profundo
2.
Bioessays ; 43(8): e2100051, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34101866

RESUMO

An astonishingly diverse biomolecular circuitry orchestrates the functioning machinery underlying every living cell. These biomolecules and their circuits have been engineered not only for various industrial applications but also to perform other atypical functions that they were not evolved for-including computation. Various kinds of computational challenges, such as solving NP-complete problems with many variables, logical computation, neural network operations, and cryptography, have all been attempted through this unconventional computing paradigm. In this review, we highlight key experiments across three different ''eras'' of molecular computation, beginning with molecular solutions, transitioning to logic circuits and ultimately, more complex molecular networks. We also discuss a variety of applications of molecular computation, from solving NP-hard problems to self-assembled nanostructures for delivering molecules, and provide a glimpse into the exciting potential that molecular computing holds for the future. Also see the video abstract here: https://youtu.be/9Mw0K0vCSQw.


Assuntos
Computadores Moleculares , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA