RESUMO
Cancer is associated with the highest mortality rate globally. While life-saving screening and treatments exist, better awareness is needed. RNF187, an E3 ligase regulating biological processes, belongs to the RING domain-containing E3 ligase family. RNF187 may serve as an oncogene due to abnormal expression in tumors. However, its association with immune infiltration and prognosis across various cancers remains unclear. We searched several databases including TCGA, GTE x, CCLE, TIMER, and GSEA. R software was used to evaluate RNF187 differential expression, survival, pathology stage, DNA methylation, tumor mutational burden (TMB), microsatellite instability (MSI), gene co-expression analysis, mismatch repairs (MMRs), tumor microenvironment (TME), and immune cell infiltration. Clinicopathological data were collected, and immunohistochemistry was used to verify RNF187 expression in tumor tissues. RNF187 expression was up-regulated in various cancers compared to that in normal tissues and associated with poor patient outcomes. Dysregulation of RNF187 expression in multiple cancer types was strongly correlated with DNA methylation, MMR, MSI, and TMB. RNF187 could interact with different immune cells in cancers. Biomarkers associated with RNF187 may be helpful for prognosis and immunology in treating pan-cancer patients.
Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Biomarcadores Tumorais/genética , Prognóstico , Neoplasias/diagnóstico , Neoplasias/genética , Software , Ubiquitina-Proteína Ligases/genética , Microambiente Tumoral/genética , TransativadoresRESUMO
PURPOSE: This study aims to identify potential myopia biomarkers using machine learning algorithms, enhancing myopia diagnosis and prognosis prediction. METHODS: GSE112155 and GSE15163 datasets from the GEO database were analyzed. We used "limma" for differential expression analysis and "GO plot" and "clusterProfiler" for functional and pathway enrichment analyses. The LASSO and SVM-RFE algorithms were employed to screen myopia-related biomarkers, followed by ROC curve analysis for diagnostic performance evaluation. Single-gene GSEA enrichment analysis was executed using GSEA 4.1.0. RESULTS: The functional analysis of differentially expressed genes indicated their role in carbohydrate generation and polysaccharide synthesis. We identified 23 differentially expressed genes associated with myopia, four of which were highly effective diagnostic biomarkers. Single gene GSEA results showed these genes control the ubiquitin-mediated protein hydrolysis pathway. CONCLUSION: Our study identifies four key myopia biomarkers, providing a foundation for future clinical and experimental validation studies.
Assuntos
Algoritmos , Miopia , Humanos , Biomarcadores , Bases de Dados Factuais , Aprendizado de Máquina , Miopia/diagnóstico , Miopia/genéticaRESUMO
Emerging evidence indicates that aberrant changes of lncRNAs expression induced by hypoxia participate in the development of HCC. The present study aimed to identify novel hypoxia-responsive lncRNAs and reveal its role and mechanism in HCC. Hypoxia exposure in HCC tissues was comprehensively estimated based on public data using multiple hypoxia gene signatures. Huh7 cells were treated with hypoxia and RNA-seq was performed. Then we analyzed the changes of lncRNAs in HCC tissues and cells exposed to hypoxia. We found that lncRNA BSG-AS1 was highly expressed in tissues with high hypoxia score. Then we verified the response of lncRNA BSG-AS1 to hypoxia in the cell hypoxia model in vitro. Through functional phenotypic analysis, we found that lncRNA BSG-AS1 can mediate the promoting effect of hypoxia on the proliferation and migration in HCC cells. RNA-seq was used to find the downstream target genes of lncRNA BSG-AS1. Sequencing data and wet experiments showed that mRNA of BSG decreased after knockout of lncRNA BSG-AS1, and mediated the promotive effect of lncRNA BSG-AS1 on proliferation and migration in HCC cells. The mechanism is that lncRNA BSG-AS1 can enhance the stability of BSG mRNA as antisense lncRNA. Finally, the data based on the public cohort and the cohort we collected suggested that the overexpression of lncRNA BSG-AS1 and BSG are related to the poor prognosis. In conclusion, lncRNA BSG-AS1 is a novel hypoxia-responsive lncRNA. LncRNA BSG-AS1 can positively regulate BSG, by maintaining the mRNA stability of BSG, thus promoting the proliferation and migration of HCC. High expression of lncRNA BSG-AS1 and BSG are risk factors for prognosis.