Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(27): e2308182, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308386

RESUMO

The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x. DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2, the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1 mg-1 cat (9350 µg h-1 mg-1 cat) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.

2.
Small ; : e2404011, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864206

RESUMO

While MXene is widely used as an electrode material for supercapacitor, the intrinsic limitation of stacking caused by the interlayer van der Waals forces has yet to be overcome. In this work, a strategy is proposed to fabricate a composite scaffold electrode (MCN) by intercalating MXene with highly nitrogen-doped carbon nanosheets (CN). The 2D structured CN, thermally converted and pickling from Zn-hexamine (Zn-HMT), serves as a spacer that effectively prevents the stacking of MXene and contributes to a hierarchically scaffolded structure, which is conducive to ion movement; meanwhile, the high nitrogen-doping of CN tunes the electronic structure of MCN to facilitate charge transfer and providing additional pseudocapacitance. As a result, the MCN50 composite electrode achieves a high specific capacitance of 418.4 F g-1 at 1 A g-1. The assembled symmetric supercapacitor delivers a corresponding power density of 1658.9 W kg-1 and an energy density of 30.8 Wh kg-1. The all-solid-state zinc ion supercapacitor demonstrates a superior energy density of 68.4 Wh kg-1 and a power density of 403.5 W kg-1 and shows a high capacitance retention of 93% after 8000 charge-discharge cycles. This study sheds a new light on the design and development of novel MXene-based composite electrodes for high performance all-solid-state zinc ion supercapacitor.

3.
Anal Biochem ; 686: 115422, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38070664

RESUMO

Core-shell ZIF-8@ZIF-67 was synthesized by growing a cobalt-based ZIF-67 on a ZIF-8 seed particle. Herein, through selective etching of the ZIF-8@ZIF-67 core and subsequent direct carbonization, core-shell hollow ZnO@CoO nitrogen-doped nanoporous carbon (HZnO@CoO-NPC) nanocomposites were prepared. HZnO@CoO-NPCs possessed a high nitrogen content, large surface area, high degree of graphitization and excellent electrical conductivity, all of which were attributed to successfully integrating the unique advantages of ZIF-8 and ZIF-67. HZnO@CoO-NPCs were used to assemble acetylcholinesterase (AChE) biosensors for organophosphorus pesticides (OPs) detection. The low detection limit of 2.74 × 10-13 M for chlorpyrifos and 7.6 × 10-15 M for parathion-methyl demonstrated the superior sensing performance. The results showed that the electrochemical biosensor constructed by HZnO@CoO-NPC provided a sensitive and efficient electrochemical strategy for OPs detection.


Assuntos
Técnicas Biossensoriais , Inseticidas , Metil Paration , Nanocompostos , Praguicidas , Óxido de Zinco , Compostos Organofosforados , Nitrogênio , Acetilcolinesterase/química , Técnicas Biossensoriais/métodos
4.
Luminescence ; 39(3): e4701, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441275

RESUMO

In the present work, a novel n-UV convertible colour-tunable emitting phosphor was obtained based on the efficient Ce3+ -Tb3+ energy transfer in the Y10 Al2 Si3 O18 N4 host. By properly controlling the ratio of Ce3+ /Tb3+ , the colour hue of the obtained powder covered the blue and green regions, under excitation of 365 nm. The steady-state and dynamic-state luminescence measurement was performed to shed light on the related mechanism, which was justified by the electronic dipole-quadrupole dominating the related energy transfer process. Preliminary studies showed that Y10 Al2 Si3 O18 N4 :Ce3+ ,Tb3+ can be promising as an inorganic phosphor for white LED applications.


Assuntos
Eletrônica , Cor , Transferência de Energia
5.
Nanotechnology ; 34(28)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37054697

RESUMO

Efficient and portable electrochemical biosensors are received to evaluation of pesticides in the environment, which can make great significance for food safety. In this study, the Co-based oxides with a kind of hierarchical porous hollow and nanocages were constructed, in which the materials (Co3O4-NC) were encapsulated with PdAu nanoparticles (NPs). Due to the unique porous structure, the changeable valence state of cobalt and the synergistic effect of bimetallic PdAuNPs, PdAu@Co3O4-NC possessed excellent electron pathways, and showed more exposed active sites. Accordingly, the porous Co-based oxides have been applied to construct an acetylcholinesterase (AChE) electrochemical biosensor, which showed good performance for organophosphorus pesticides (OPs) detection. The optimum biosensing platform based on nanocomposites was applied to exhibit highly sensitive determination of omethoate and chlorpyrifos, with the relative low detection limit of 6.125 × 10-15M and 5.10 × 10-13M, respectively. And a wide detection range of 6.125 × 10-15∼ 6.125 × 10-6M and 5.10 × 10-13∼ 5.10 × 10-6M for these two pesticides were achieved. Therefore, the PdAu@Co3O4-NC may represent a powerful tool for ultrasensitive sensing of OPs, and have great potential application.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Praguicidas , Praguicidas/análise , Compostos Organofosforados , Porosidade , Acetilcolinesterase/química , Óxidos/química , Cobalto/química , Técnicas Eletroquímicas
6.
Nanotechnology ; 34(35)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37334966

RESUMO

Fuel cells, as the alternative to fossil energy, have engaged widespread attention by reason of the high conversion efficiency from the chemical energy to the electric energy combined with low pollution emissions. The cathodic ORR catalysts with excellent performance and cost-effectiveness are the dominant point towards the massive development of fuel cells. Here, our group select the Pd NWs as the template and construct the Pd@PtRuNi core-shell bilayer nanostructure to expand platinum atom utilization. Pd@PtRuNi bilayer core-shell NWs unfold elevated mass activity of1.62Amgmetal-1at 0.9 V versus RHE in alkaline media, 2.03- and 6.23-fold of pristine Pd NWs and benchmark commercial Pt/C, respectively. Meanwhile, the cyclic stability tests reveal the excellent durability of Pd@PtRuNi NWs, whose mass activity is only 13.58% degradation after accelerated durability tests. The catalytic activity and durability towards ORR are better than the U.S. 2025 DOE target (0.44Amgpt-1and less than 40% activity attenuation at 0.9 V after 30 000 potential cycles). The elevated catalytic properties can be traceable to the synergism between the ligand effect of Ni and Ru and one-dimensional structure superiority, which optimizes the electronic structure of active sites, promotes the charge transfer and restrains the agglomeration and detachment.

7.
Nanotechnology ; 35(3)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37797600

RESUMO

The electrolytic water method is an outstanding hydrogen production process because of its high stability and no restriction. A low-priced and efficient catalyst for electro-deposition of Ni-Co microspheres and nanoclusters on carbon steel (Ni-Co/CS) has been prepared by the dynamic hydrogen bubble template. In the 6 M KOH solution, Ni-Co/CS only requires an overpotential of 48 mV to provide a current density of 50 mA cm-2. At the same time, it also has a large electrochemically active specific surface area (ECSA) and a hydrophilic surface. In addition, the study about the influence of carbon steel (CS) on Ni-Co coatings and the comparison experiment for different base materials has been completed. The results prove that CS is an excellent base material for hydrogen production. It can help the Ni-Co catalyst to have a stable electrolysis in 6 M KOH for 500 h. The above properties of Ni-Co/CS catalyst make it a new choice of hydrogen production by electrolysis of water in practical applications.

8.
Anal Biochem ; 646: 114628, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35257680

RESUMO

The stability of biosensors is of significant importance for practical applications, and the natural biomineralization processes in living organisms have inspired us from a new perspective. In this work, acetylcholinesterase (AChE) was embedded into zeolitic imidazolate framework-8 carriers (with negligible cytotoxicity) via biomimetic mineralization, being demonstrated to be a stable strategy for enzyme immobilization. When further coupled with the conductive and catalytic Au nanoparticles, the biocomposites were explored as electrochemical pesticide detection biosensor, which showed favorable analytical performance, and improved stability comparing with other biosensors. This work provides a new strategy for the reasonable design of stable biosensors for different analytes monitoring.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Praguicidas , Zeolitas , Acetilcolinesterase/química , Enzimas Imobilizadas/química , Ouro/química , Nanopartículas Metálicas/química , Praguicidas/análise , Zeolitas/química
9.
Anal Biochem ; 652: 114726, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588856

RESUMO

Bimetallic nanomaterials with various dimensions have been successfully explored in electrochemical biosensor to detect the carbamate pesticide. One-dimensional bimetallic nanomaterials with mesoporous, which possess bigger electrochemical active area, more catalytic active sites and faster electron transmission efficiency, may have excellent performance in electrochemical biosensor, but have been rarely reported. In order to confirm this hypothesis, one-dimensional PdRh alloy mesoporous nanotubes were prepared and applied as a platform for carbamate pesticide electrochemical detection. Upon optimum conditions, the constructed AChE sensor showed an ultrahigh sensitivity (0.279 µA/nM), a wide linear range (9.44 × 10-8 - 0.944 mg/L) and a low detection limit (9.44 × 10-8 mg/L) for carbaryl. And the biosensor exhibited outstanding anti-interference ability, precision and stability. Moreover, the actual sample detection of the biosensor has been demonstrated with a satisfactory recovery (94.01%-102.80%). The remarkable property may attribute to the integrated advantages of one-dimensional mesoporous structure and bimetallic alloy.


Assuntos
Técnicas Biossensoriais , Nanotubos , Praguicidas , Ligas , Técnicas Biossensoriais/métodos , Carbamatos , Técnicas Eletroquímicas/métodos , Praguicidas/análise
10.
Nanotechnology ; 32(36)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-33836518

RESUMO

An electrochemical catalyst with efficient, stable, inexpensive energy storage for oxygen evolution and hydrogen evolution has raised global concerns on energy, calling for high-performance materials for effective treatments. In this paper, novel amorphous polymetallic doped CeO2particles were prepared for an electrochemical catalyst via homogeneous phase precipitation at room temperature. Metal ions can be easily embedded into the oxygen vacancies formed by CeO2, and the the electron transport capacity of the CeO2/NiFeCo electrocatalyst is improved owing to the increase in active sites. In addition, the amorphous CeO2/NiFeCo composite material is in a metastable state and will transform into different active states in a reducing or oxidizing environment. Furthermore, the amorphous material drives oxygen evolution reaction (OER) through the lattice oxygen oxidation mechanism (LOM), while LOM can effectively bypass the adsorption of strongly related intermediates in the adsorbate release mechanism, thus promoting OER procedure in a timely manner. As a result, CeO2/NiFeCo exhibits a lower oxygen evolution overpotential of 260 mV at 10 mA cm-2current density, which shows a predatorily competitive advantage compared with commercially available RuO2and the reported catalysts.

11.
Nanotechnology ; 32(12): 125403, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33232951

RESUMO

Fe2O3@OMC (ordered mesoporous carbon) is synthesized using Fe-MOFs (metal-organic frameworks). The Fe2O3@OMC pore size is mostly concentrated at approximately 2-4 nm. Compared to traditional OMC or carbonized Fe-MOFs, Fe2O3@OMC demonstrates a higher capacity (the capacity remains at 1176.6 mAh g-1 after 500 cycles under a current density of 0.1 A g-1) and a longer cycle life. The first cycle capacity of Fe2O3@OMC is ultrahigh at 2448.6 mAh g-1, and the reversible capacity is 1294.1 mAh g-1. Fe2O3@OMC maintains a good performance under current densities of 0.1 A g-1, 0.2 A g-1, 0.5 A g-1, 1 A g-1, 2 A g-1, and 5 A g-1, with electric capacities of 1100.8 mAh g-1, 1017.6 mAh g-1, 849.3 mAh g-1, 690.7 mAh g-1, 506.7 mAh g-1, and 272.1 mAh g-1, respectively. Thus, the material has good rate performance. Combining iron oxide and MOFs is helpful to improve the capacity performance.

12.
Nanotechnology ; 33(10)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34763323

RESUMO

The electrode material is vital for the performance of the electrochemical biosensor. Lately, many nanomaterials have been developed to improve the sensitivity and detection efficiency of the biosensors. In this work, a kind of one-dimensional nanomaterials, the CuPt alloy nanotubes with an open end (CuPt alloy NTs-AOE), was explored. The nanotubes with an open end can provide a larger electrochemical active surface area and more active sites for the immobilization of enzyme. The CuPt alloy displays excellent conductivity and catalytic activity. In addition, the Cu shows the great affinity to thio-compounds, which can greatly enhance the detection efficiency and sensitivity. As a result, the prepared biosensor demonstrates the wider linear range of 9.98 × 10-10-9.98 × 10-5g l-1for fenitrothion and 9.94 × 10-11-9.94 × 10-4g l-1for dichlorvos (as model OPs ) and with the lower detection limit of 1.84 × 10-10g l-1and 6.31 × 10-12g l-1(S/N = 3), respectively. Besides, the biosensor has been used to detect the real samples and obtains satisfactory recoveries (95.58%-100.56%).

13.
Phys Chem Chem Phys ; 23(6): 3934-3941, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33543199

RESUMO

Nowadays with the increasing demand for lithium-ion batteries (LIBs), the high-capacity silicon anode is becoming a promising electrode material. However, the huge expansion of silicon during long cycling remains a significant challenge. Herein, a functional double layer Si-based multi-component structure Si@void C@TiO2 was designed as anode material for lithium-ion batteries. This structure has a void space inside and a double shell composed of carbon layer and crystalline TiO2 outside, which not only takes effective in improving electric conductivity of the Si electrode material, but also maintains the structural stability and integrity of the electrode. The layers impede the electrolyte from contacting with Si, contributing to forming a stable SEI film and providing high Coulombic efficiency. Therefore, the Si@void C@TiO2 electrode provides a high reversible capacity of 1251 mA h g-1, and stable long cycling with a capacity of 668 mA h g-1 over 500 cycles at a current density of 100 mA g-1, and 98% average Coulombic efficiency, making this potential superior material Si-based multi-component anode a high-performance electrode material for Li-ion batteries.

14.
Nanotechnology ; 31(37): 375404, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32413888

RESUMO

Realizing high capacity at high current densities is one of the challenges for battery electrode materials towards practical applications, especially for metal oxide electrode materials. Designing a specific structure that can alleviate volume expansion and accelerate the diffusion of the ions is an effective way to achieve this goal. Herein, a porous multilayer core-shell structured manganese cobalt oxide/carbon composite (MnCo2O4/C) was obtained by using a simple route that combines the hydrothermal method with calcination. The structure is similar to a Russian doll, which is nested with three to four layers of concentric porous shells. The porous multilayer core-shell structures can relieve volume expansion during discharge/charge and reduce the Li-ion diffusion path. Additionally, it can provide a richer activity site, thereby storing more lithium ions. When used as an anode material, the synthesized MnCo2O4/C showed a high specific capacity of 978 mAh g-1 after 800 cycles at a current density of 1 A g- 1. Even at a high current density of 10 A g-1, the electrode could still deliver a specific capacity of 251 mAh g-1, which makes it more suitable for powering large equipment such as electric vehicles.

15.
Phys Chem Chem Phys ; 22(26): 14537-14543, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32578612

RESUMO

Numerous experiments have demonstrated that an appropriate electronic configuration can effectively activate the electrocatalytic activity. However, systematic studies on the effects of non-metallic elemental doping and its p-orbital center (εp) on electrocatalysis have not yet been carried out. Combining theoretical and experimental methods, we demonstrate an electronic configuration and p-orbital center control engineering for promoting the HER course in both acid and alkaline solutions over group VA elements doped into the inert basal plane of nanoMoS2. In acidic solutions, As-doped MoS2 has the best electrocatalytic activity. Theoretically, the calculated ΔGH of the As atom is only -0.07 eV, indicating that it has excellent catalytic performance. Furthermore, the p-orbital center under and near the Fermi level plays a significant role in the H adsorption course, and the closer the εp value is to the Fermi level, the weaker the H- non-metallic atom bond is. An appropriate εp can insure a proper strength of bond with H and further influence the catalytic activity of the HER. In alkaline solutions, P-doped MoS2 has the best electrocatalytic activity, which is due to the engineering of water dissociation sites by doping P atoms into MoS2 nanosheets. These findings pave the path to develop a rational strategy to trigger the activity of the inert basal plane of MoS2, to enhance the conductivity of inherent MoS2 towards the HER and provide a new idea that can be extended to other layered dichalcogenides.

16.
Small ; 15(17): e1900288, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30920760

RESUMO

The catalytic performance of Pt-based catalysts for oxygen reduction reactions (ORR) can generally be enhanced by constructing high-index exposed facets (HIFs). However, the synthesis of Pt alloyed high-index skins on 1D non-Pt surfaces to further improve Pt utilization and stability remains a fundamental challenge for practical nanocrystals. In this work, Pd nanowires (NWs) are selected as a rational medium to facilitate the epitaxial growth of Pt and Ni. Based on the different nucleation and growth habits of Pt and Ni, a continuous PtNi alloy skin bounded with HIFs spiraled on a Pd core can be obtained. Here, the as-prepared helical Pd@PtNi NWs possess high HIF densities, low Pt contents, and optimized oxygen adsorption energies, demonstrating an enhanced ORR mass activity of 1.75 A mgPt -1 and a specific activity of 3.18 mA cm-2 , which are 10 times and 12 times higher than commercial Pt/C catalysts, respectively. In addition, the 1D nanostructure enables the catalyst to be highly stable after 30 000 potential sweeping cycles. This work successfully extends bulky high-indexed Pt alloys to core-shell nanostructures with the design of a new, highly efficient and stable Pt-based catalyst for fuel cells.

17.
Small ; 15(16): e1805435, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30941892

RESUMO

A class of 2D layered materials exhibits substantial potential for high-performance electrocatalysts due to high specific surface area, tunable electronic properties, and open 2D channels for fast ion transport. However, liquid-phase exfoliation always utilizes organic solvents that are harmful to the environment, and the active sites are limited to edge sites. Here, an environmentally friendly exfoliator in aqueous solution is presented without utilizing any toxic or hazardous substance and active site self-assembly on the inert base of 2D materials. Benefiting from thin 2D/2D heterostructure and strong interfacial coupling, the resultant highly disordered amorphous NiFe/2D materials (Ti3C2 MXene, graphene and MoS2 ) thin nanosheets exhibit extraordinary electrocatalytic performance toward oxygen evolution reaction (OER) in alkaline media. DFT results further verify the experimental results. The study emphasizes a viable idea to probe efficient electrocatalysts by means of the synergistic effect of environmentally friendly exfoliator in aqueous solution and active site self-assembly on the inert base of 2D materials which forms the unique thin 2D/2D heterostructure in-suit. This new type of heterostructure opens up a novel avenue for the rational design of highly efficient 2D materials for electrocatalysis.

18.
Nanotechnology ; 30(5): 055501, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499458

RESUMO

The exploration of new materials for modifying electrodes is important to advance electrochemical biosensors. Herein, we demonstrated that amorphous bimetallic boride material (Co-2Ni-B) prepared by a simple and facile aqueous reaction is an efficient matrix to immobilize acetylcholinesterase (AChE) to construct a biosensor for the determination of organophosphate pesticides. The effects of different composition and crystallinity on its electrochemical performance are investigated, and the optimization studies of the biological transducer were also discussed. Under optimal conditions, the fabricated sensor showed good analytical performance for the determination of chlorpyrifos with a low limit of detection (2.83 pM) and a wide linear range (3 pM-300 nM). The proposed biosensor also demonstrated high reproducibility, stability and accuracy. The impressive performance was due to the excellent conductivity and the unique amorphous bimetal-metalloid complex nanostructure. These results introduce a new class of promising materials as a robust platform for biosensor applications.


Assuntos
Acetilcolinesterase/química , Compostos de Boro/química , Metais/química , Organofosfatos/química , Praguicidas/química , Técnicas Biossensoriais/métodos , Eletrodos , Reprodutibilidade dos Testes
19.
Small ; 14(36): e1801897, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30091511

RESUMO

A full understanding of ion transport in porous carbon electrodes is essential for achieving effective energy storage in their applications as electrochemical supercapacitors. It is generally accepted that pores in the size range below 0.5 nm are inaccessible to electrolyte ions and lower the capacitance of carbon materials. Here, nitrogen-doped carbon with ultra-micropores smaller than 0.4 nm with a narrow size distribution, which represents the first example of electrode materials made entirely from ultra-microporous carbon, is prepared. An in situ electrochemical quartz crystal microbalance technique to study the effects of the ultra-micropores on charge storage in supercapacitors is used. It is found that ultra-micropores smaller than 0.4 nm are accessible to small electrolyte ions, and the area capacitance of obtained sample reaches the ultrahigh value of 330 µF cm-2 , significantly higher than that of previously reported carbon-based materials. The findings provide a better understanding of the correlation between ultra-micropore structure and capacitance and open new avenues for design and development of carbon materials for the next generation of high energy density supercapacitors.

20.
Small ; 14(22): e1704503, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29717803

RESUMO

The synthesis of Pt nanotubes catalysts remains a substantial challenge, especially for those with both sub-nanometer wall thickness and micrometer-scale length characteristics. Combining techniques of insulin fibril template with Pd nanowire template, numerous Pt nanotubes with diameter of 5.5 nm, tube-length of several micrometers, and ultrathin wall thickness of 1 nm are assembled. These tubular catalysts with both open ends deliver electrochemical active surface area (ECSA) of 91.43 m2 gpt-1 which results from multiple Pt atoms exposed on the inner and outer surfaces that doubled Pt atoms can participate in catalytic reactions, further with enhanced electrocatalytic performance for oxygen reduction reaction (ORR). The ultrafine Pt nanotubes represent a class of hollow nanostructure with increased Pt-utilization and large ECSA, which is regarded as a type of cost-effective catalysts for ORR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA