Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2312046, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829034

RESUMO

Accurate construction of artificial nano-chaperones' structure is crucial for precise regulation of protein conformational transformation, facilitating effective treatment of proteopathy. However, how the ligand-anchors of nano-chaperones affect the spatial conformational changes in proteins remains unclear, limiting the development of efficient nano-chaperones. In this study, three types of gold nanoparticles (AuNPs) with different core/ligands interface anchor structures (Au─NH─R, Au─S─R, and Au─C≡C─R, R = benzoic acid) are synthesized as an ideal model to investigate the effect of interfacial anchors on Aß and amylin fibrillization. Computational results revealed that the distinct interfacial anchors imparted diverse distributions of electrostatic potential on the nanointerface and core/ligands bond strength of AuNPs, leading to differential interactions with amyloid peptides. Experimental results demonstrated that all three types of AuNPs exhibit site-specific inhibitory effects on Aß40 fibrillization due to preferential binding. For amylin, amino-anchored AuNPs demonstrate strong adsorption to multiple sites on amylin and effectively inhibit fibrillization. Conversely, thiol- and alkyne-anchored AuNPs adsorb at the head region of amylin, promoting folding and fibrillization. This study not only provided molecular insights into how core/ligands interfacial anchors of nanomaterials induce spatial conformational changes in amyloid peptides but also offered guidance for precisely engineering artificial-chaperones' nanointerfaces to regulate the conformational transformation of proteins.

2.
J Org Chem ; 89(11): 7552-7560, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38805672

RESUMO

Herein, a palladium-catalyzed diastereoselective dearomatization/cross-coupling cyclization reaction between N-arylacyl indoles and (E)-ß-chlorovinyl ketones is reported. Through this cyclization/cycloisomerization cascade, a series of furan-containing indolines were obtained in yields up to 95%. The reaction features readily accessible starting materials, benzyl Pd(II)-catalyzed cycloisomerization of (E)-ß-chlorovinyl ketones, the sequential formation of three bonds and bis-heterocycles, and excellent diastereoselectivity. More importantly, the carbene-secondary benzyl migratory insertion is proven to be a critical process in the sequential cyclizations.

3.
J Org Chem ; 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180542

RESUMO

A palladium-catalyzed domino cyclization/cycloisomerization reaction of alkyne-tethered carbamoyl chlorides with (E)-ß-chloroenones is reported. This reaction proceeds via a syn-carbopalladation of the alkyne, followed by a vinyl-PdII-catalyzed cycloisomerization of the (E)-ß-chloroenone cascade, which provides an efficient method to synthesize furan-linked methylene oxindoles. The reaction features stereodefined vinyl-PdII species, high to excellent 5-exo/6-endo selectivity, excellent Z/E selectivity, and the sequential formation of three bonds and bis-heterocycles. The strategy for the synthesis of furan-containing benzofurans has also been demonstrated.

4.
Langmuir ; 39(28): 9850-9856, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37413975

RESUMO

DNA has been demonstrated as a powerful platform for the construction of inorganic nanoparticles (NPs) into complex three-dimensional assemblies. Despite extensive research, the physical fundamental details of DNA nanostructures and their assemblies with NPs remain obscure. Here, we report the identification and quantification of the assembly details of programmable DNA nanotubes with monodisperse circumferences of a 4, 5, 6, 7, 8, or 10 DNA helix and their pearl-necklace-like assemblies with ultrasmall gold nanoparticles, Au25 nanoclusters (AuNCs), liganded by -S(CH2)nNH3+ (n = 3, 6, 11). The flexibilities of DNA nanotubes, analyzed via statistical polymer physics analysis through atomic force microscopy (AFM), demonstrate that ∼2.8 power exponentially increased with the DNA helix number. Moreover, the short-length liganded AuS(CH2)3NH3+ NCs were observed to be able to form pearl-necklace-like DNA-AuNC assemblies stiffened than neat DNA nanotubes, while long-length liganded AuS(CH2)6NH3+ and AuS(CH2)11NH3+ NCs could fragment DNA nanotubular structures, indicating that DNA-AuNC assembling can be precisely manipulated by customizing the hydrophobic domains of the AuNC nanointerfaces. We prove the advantages of polymer science concepts in unraveling useful intrinsic information on physical fundamental details of DNA-AuNC assembling, which facilitates DNA-metal nanocomposite construction.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Polímeros
5.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36991972

RESUMO

In the distributed information fusion of wireless sensor networks (WSNs), the filtering accuracy is commonly negatively correlated with energy consumption. Therefore, a class of distributed consensus Kalman filters was designed to balance the contradiction between them in this paper. Firstly, an event-triggered schedule was designed based on historical data within a timeliness window. Furthermore, considering the relationship between energy consumption and communication distance, a topological transformation schedule with energy-saving is proposed. The energy-saving distributed consensus Kalman filter with a dual event-driven (or event-triggered) strategy is proposed by combining the above two schedules. The sufficient condition of stability for the filter is given by the second Lyapunov stability theory. Finally, the effectiveness of the proposed filter was verified by a simulation.

6.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36850516

RESUMO

The low absolute positioning accuracy of industrial robots is one of the bottlenecks preventing industrial robots from precision applications. Kinematic calibration is the main way to improve the absolute positioning accuracy of industrial robots, which greatly relies on three-dimensional (3D) measurement instruments, including laser trackers and pull rope mechanisms. These instruments are costly, and their required intervisibility space is large. In this paper, a precision 3D measurement instrument integrating multiple laser range sensors is designed, which fuses the information of multiple redundant laser range sensors to obtain the coordinates of a 3D position. An identification model of laser beam position and orientation parameters based on redundant distance information and standard spherical constraint is then developed to reduce the requirement for the assembly accuracy of laser range sensors. A hybrid identification algorithm of PSO-LM (particle swarm optimization Levenberg Marquardt) is designed to solve the high-order nonlinear problem of the identification model, where PSO is used for initial value identification, and LM is used for final value identification. Experiments of identification of position and orientation, verifications of the measuring accuracy, and the calibration of industrial robots are conducted, which show the effectiveness of the proposed 3D measurement instrument and identification methods. Moreover, the proposed instrument is small in size and can be used in narrow industrial sites.

7.
Nano Lett ; 22(7): 2964-2970, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35297644

RESUMO

Synthetic nanomaterials possessing biomolecular-chaperone functions are good candidates for modulating physicochemical interactions in many bioapplications. Despite extensive research, no general principle to engineer nanomaterial surfaces is available to precisely manipulate biomolecular conformations and behaviors, greatly limiting attempts to develop high-performance nanochaperone materials. Here, we demonstrate that, by quantifying the length (-SCxR±, x = 3-11) and charges (R- = -COO-, R+ = -NH3+) of ligands on Au25 gold nanochaperones (AuNCs), simulating binding sites and affinities of amyloid-like peptides with AuNCs, and probing peptide folding and fibrillation in the presence of AuNCs, it is possible to precisely manipulate the peptides' conformations and, thus, their amyloidosis via customizing AuNCs nanointerfaces. We show that intermediate-length liganded AuNCs with a specific charge chaperone peptides' native conformations and thus inhibit their fibrillation, while other types of AuNCs destabilize peptides and promote their fibrillation. We offer a microscopic molecular insight into peptide identity on AuNCs and provide a guideline in customizing nanochaperones via manipulating their nanointerfaces.


Assuntos
Amiloidose , Nanopartículas Metálicas , Amiloide/metabolismo , Ouro/química , Humanos , Ligantes , Nanopartículas Metálicas/química , Chaperonas Moleculares/química , Peptídeos
8.
Traffic ; 21(3): 274-296, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31883188

RESUMO

Protein retention and the transport of proteins and lipids into and out of the Golgi is intimately linked to the biogenesis and homeostasis of this sorting hub of eukaryotic cells. Of particular importance are membrane proteins that mediate membrane fusion events with and within the Golgi-the Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). In the Golgi of budding yeast cells, the syntaxin SNARE Sed5p oversees membrane fusion events. Determining how Sed5p is localized to and trafficked within the Golgi is critical to informing our understanding of the mechanism(s) of biogenesis and homeostasis of this organelle. Here we establish that the steady-state localization of Sed5p to the Golgi appears to be primarily conformation-based relying on intra-molecular associations between the Habc domain and SNARE-motif while its tribasic COPI-coatomer binding motif plays a role in intra-Golgi retention.


Assuntos
Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Proteínas de Membrana/fisiologia , Proteínas SNARE/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Qa-SNARE/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Angew Chem Int Ed Engl ; 54(7): 2245-50, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25533756

RESUMO

Molecular chirality is introduced at liquid-solid interfaces. A ring-like aggregation of amyloid Aß(1-40) on N-isobutyryl-L-cysteine (L-NIBC)-modified gold substrate occurs at low Aß(1-40) concentration, while D-NIBC modification only results in rod-like aggregation. Utilizing atomic force microscope controlled tip-enhanced Raman scattering, we directly observe the secondary structure information for Aß(1-40) assembly in situ at the nanoscale. D- or L-NIBC on the surface can guide parallel or nonparallel alignment of ß-hairpins through a two-step process based on electrostatic-interaction-enhanced adsorption and subsequent stereoselective recognition. Possible electrostatic interaction sites (R5 and K16) and a chiral recognition site (H14) of Aß(1-40) are proposed, which may provide insight into the understanding of this effect.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Agregados Proteicos , Peptídeos beta-Amiloides/ultraestrutura , Cisteína/análogos & derivados , Cisteína/química , Ouro/química , Humanos , Microscopia de Força Atômica , Fragmentos de Peptídeos/ultraestrutura , Estrutura Secundária de Proteína , Eletricidade Estática , Estereoisomerismo , Propriedades de Superfície
10.
Nanomedicine (Lond) ; 19(16): 1449-1469, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-39121376

RESUMO

Aim: To identify hotspots in this field and provide insights into future research directions. Methods: Publications were retrieved from the Web of Science Core Collection database. R Bibliometrix software, VOSviewer and CiteSpace were used to perform the bibliometric and visualization analyses. Results: The analysis comprised 468 publications from 58 countries, with the United States, China and India being the leading contributors. 'Gene therapy', 'nanoparticles' and 'insulin therapy' are the primary focuses. 'Green synthesis', 'cytotoxicity', 'bioavailability' and 'diabetic foot ulcers' have gained prominence, signifying high-intensity areas of interest expected to persist as favored research topics in the future. Conclusion: This study delves into recent frontiers and topical research directions and provides valuable references for further research in this field.


Diabetes mellitus and its complications are substantial global public health concerns given their elevated mortality rates and economic impact. As an emerging technology of the 21st century, nanotechnology plays a crucial role in the diagnosis, monitoring and treatment of diabetes and its complications, offering advantages such as targeting specificity, excellent biocompatibility and high bioavailability. Bibliometrics can analyze the distribution and correlation of authors/countries/institutions in the published literature of a particular research field. It can also objectively and reliably analyze research hotspots, evolutionary trends and anticipate future developments in a given field. This marks the inaugural bibliometric study delving into the application of nanomedicines in diabetes mellitus and its complications from 2001 to 2023. Our results found that nanotechnology research on diabetes and its complications began in 2001 and is still in a continuous development phase. The United States, China and India being the leading contributors in this field. Zhejiang University has the most research in this area, and ACS Nano is the most popular journal. Zhang Y and Wang X are the most valuable authors. 'Gene therapy', 'nanoparticles' and 'insulin therapy' are the primary focus areas in this field. 'Green synthesis', 'cytotoxicity', 'bioavailability' and 'diabetic foot ulcers' will be the promising interests in the future. This study supplements the research data in this field, offering new perspectives and references for scholars focusing on diabetes and its complications.


Assuntos
Bibliometria , Diabetes Mellitus , Nanotecnologia , Humanos , Diabetes Mellitus/tratamento farmacológico , Nanotecnologia/métodos , Complicações do Diabetes , Nanopartículas , Terapia Genética , Insulina , Nanomedicina/métodos , Animais
11.
ACS Appl Bio Mater ; 7(5): 3330-3336, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701398

RESUMO

The threat of bacterial infections, especially drug-resistant strains, to human health necessitates the development of high-efficient, broad-spectrum and nonantibiotic nanodisinfectant. However, the effect of interfacial charge on the antibacterial properties of nanodisinfectant remains a mystery, which greatly limits the development of highly antibacterial active nanodisinfectant. Herein, we developed three types of ultrasmall (d < 3 nm) gold-nanoparticles (AuNPs) modified with 5-carboxylic(C)/methoxy(M)amino(A)/-2-mercaptobenzimidazole (C/M/A MB) to investigate their interfacial charge on antibacterial performance. Our results showed that both the electropositive AMB-AuNPs and electronegative CMB-AuNPs exhibited no antibacterial activity against both Gram-positive (G+) and Gram-negative (G-) bacteria. However, the electroneutral MMB-AuNPs exhibited unique antibacterial performance against both G+ and G- bacteria, even against methicillin-resistant Staphylococcus aureus (MRSA). Mechanistic investigation revealed a multipathway synergistic bacteriostatic mechanism involving MMB-AuNPs inducing damage to bacterial cell membranes, disruption of membrane potential and downregulation of ATP levels, ultimately leading to bacterial demise. Furthermore, two additional electroneutral AuNPs modified with 5-methyl-2-mercaptobenzimidazole (mMB-AuNPs) and 5-ethoxy-2-mercaptobenzimidazole (EMB-AuNPs) also demonstrated commendable antibacterial efficacy against E. coli, S. aureus, and MRSA; however, their performance was comparatively inferior to that of MMB-AuNPs. This work provides valuable insights for the development of high-performance antibacterial nanomaterials.


Assuntos
Antibacterianos , Benzimidazóis , Ouro , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Ouro/química , Ouro/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
12.
J Cell Biol ; 223(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38478017

RESUMO

SM proteins including Sly1 are essential cofactors of SNARE-mediated membrane fusion. Using SNARE and Sly1 mutants and chemically defined in vitro assays, we separate and assess proposed mechanisms through which Sly1 augments fusion: (i) opening the closed conformation of the Qa-SNARE Sed5; (ii) close-range tethering of vesicles to target organelles, mediated by the Sly1-specific regulatory loop; and (iii) nucleation of productive trans-SNARE complexes. We show that all three mechanisms are important and operate in parallel, and that close-range tethering promotes trans-complex assembly when cis-SNARE assembly is a competing process. Further, we demonstrate that the autoinhibitory N-terminal Habc domain of Sed5 has at least two positive activities: it is needed for correct Sed5 localization, and it directly promotes Sly1-dependent fusion. "Split Sed5," with Habc presented solely as a soluble fragment, can function both in vitro and in vivo. Habc appears to facilitate events leading to lipid mixing rather than promoting opening or stability of the fusion pore.


Assuntos
Fusão de Membrana , Proteínas Munc18 , Proteínas SNARE , Proteínas de Saccharomyces cerevisiae , Proteínas Munc18/metabolismo , Ligação Proteica , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
ACS Appl Mater Interfaces ; 15(2): 3409-3419, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598876

RESUMO

The misfolding and un-natural fibrillation of proteins/peptides are associated with many conformation diseases, such as human islet amyloid polypeptide (hIAPP) in type 2 diabetes (T2D). Inspired by molecular chaperones maintaining protein homeostasis in vivo, many polymer-based artificial chaperones were introduced to regulate protein/peptide folding and fibrillation. However, the pure polymer chaperones prefer to agglomerate into large-size micelles in the physiological environment and thus lose their chaperone functions, which greatly restricts the application of polymer-based chaperones. Here, we designed and prepared a core-shell artificial chaperone based on a dozen poly-(N-isopropylacrylamide-co-N-acryloyl-O-methylated-l-arginine) (PNAMR) anchored on a gold-nanocluster (AuNC) core. The introduction of the AuNC core significantly reduced the size and enhanced the efficacy and stability of polymer-based artificial chaperones. The PNAMR@AuNCs, with a diameter of 2.5 ± 0.5 nm, demonstrated exceptional ability in maintaining the natively unfolded conformation of protein away from the misfolding and the following fibrillation by directly binding to the natively unfolded monomolecular hIAPP and hence in preventing their conversion into toxic oligomers. More excitingly, the PNAMR@AuNCs were able to restore the natural unfolded conformation of hIAPP via dissolving the ß-sheet-rich hIAPP fibrils. Considering the uniform molecular mechanism of protein misfolding and fibrillation in conformation disorders, this finding provides a generic therapeutic strategy for neurodegenerative diseases and other conformation diseases by using PNAMR@AuNC artificial chaperones to restore and maintain the native conformation of amyloid proteins.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polímeros/farmacologia , Chaperonas Moleculares , Conformação Proteica , Amiloide/química
14.
IEEE Trans Cybern ; 52(8): 8504-8514, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33961572

RESUMO

This article proposes a novel control method for vehicle active suspension systems in the presence of time-varying input delay and unknown nonlinearities. An unknown system dynamics estimator (USDE), which employs first-order low-pass filter operations and has only one tuning parameter, is constructed to deal with unknown nonlinearities. With this USDE, the widely used function approximators (e.g., neural networks and fuzzy-logic systems) are not needed, and the intermediate variables and observer used in the traditional estimators are not required. This estimator has a reduced computational burden, trivial parameter tuning and guaranteed convergence. Moreover, a predictor-based compensation strategy is developed to handle the time-varying input delay. Finally, we combine the suggested USDE and predictor to design a feedback controller to attenuate the vibrations of vehicle body and retain the required suspension performances. Theoretical analysis is carried out via the Lyapunov-Krasovkii functional to prove the stability of the closed-loop system. Simulation results based on professional vehicle simulation software Carsim are provided to show the efficiency of the proposed control scheme.


Assuntos
Algoritmos , Dinâmica não Linear , Retroalimentação , Lógica Fuzzy , Redes Neurais de Computação
15.
iScience ; 25(10): 105022, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36147954

RESUMO

Gold nanoclusters (AuNCs) have become a promising material for bioimaging detection because of their tunable photoluminescence, large Stokes shift, low photobleaching, and good biocompatibility. Last decade, great efforts have been made to develop AuNCs for enhanced imaging contrast and multimodal imaging. Herein, an updated overview of recent advances in AuNCs was present for visible fluorescence (FL) imaging, near-infrared fluorescence (NIR-FL) imaging, two-photon near-infrared fluorescence (TP-NIR-FL) imaging, computed tomography (CT) imaging, positron emission tomography (PET) imaging, magnetic resonance imaging (MRI), and photoacoustic (PA) imaging. The justification of AuNCs applied in bioimaging mentioned above applications was discussed, the performance location of different AuNCs were summarized and highlighted in an unified parameter coordinate system of corresponding bioimaging, and the current challenges, research frontiers, and prospects of AuNCs in bioimaging were discussed. This review will bring new insights into the future development of AuNCs in bio-diagnostic imaging.

16.
Front Neurosci ; 16: 947295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188456

RESUMO

Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.

17.
J Colloid Interface Sci ; 621: 67-76, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35452930

RESUMO

Revealing the disaggregating mechanism of amyloids fibrils under nanomaterials action is a key issue for their successful future use in therapy of neurodegenerative and overall amyloid-related diseases. Herein a gold nanocluster stabilized by Arg-Cys dipeptide (Au(RC)NCs) was synthesized to investigate its disaggregation activity toward Aß fibrils by using Thioflavin-T (ThT) fluorescence assay and atomic force microscopy. It was demonstrated that Au(RC)NCs is very effective in disaggregating preformed Aß fibrils, and characterized by the ultra-low apparent completely disaggregation concentration at the dose of 10 µg·mL-1. A possible disaggregation mechanism based on Au(RC)NCs triggering the disassembly of Aß fibrils into a dynamic equilibrium was proposed. The introduction of Au(RC)NCs with appropriate dose (5 µg·mL-1) can trigger the disassemble process of mature Aß fibrils into a critical state, at this very moment, if there is no more nano-disassembler, destruction of old Aß fibrils and formation of new Aß fibrils are thus in permanent dynamic equilibrium; in contrast, if there is more nano-disassembler (>10 µg·mL-1), the dynamic equilibrium prefer to shift to the direction of Aß further disassembly. Moreover, Au(RC)NCs with dosage over 10 µg·mL-1 exhibited superb protection effect against Aß-induced cytotoxicity in cell experiments. This study not only proposed a possible disassembly mechanism of amyloids fibrils under nanomaterials action, but also provide Au(RC)NCs as a promising high-effective nano-disassembler to disassemble unwanted amyloid aggregates.


Assuntos
Peptídeos beta-Amiloides , Nanoestruturas , Amiloide/química , Ouro/farmacologia , Microscopia de Força Atômica
18.
Front Aging Neurosci ; 14: 847561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615587

RESUMO

Emerging data indicate that antipsychotic treatment causes brain volume loss and astrocyte death, but the mechanisms remain elusive. Pyroptosis, inflammatory cell death characterized by the formation of inflammatory bodies, increased expression of nod-like receptor proteins (NLRPs) such as NLRP3, and activation of caspases and gasdermin D (GSDMD) are largely associated with innate immunity, inflammation, and cell injury/death. However, the main effect of antipsychotics on astrocyte pyroptotic signaling and the molecular mechanisms remain obscure. In the present study, 72-h treatment with olanzapine, quetiapine, risperidone, or haloperidol significantly decreased the viability of astrocytes. Twenty-four hour treatment with olanzapine, quetiapine, risperidone, or haloperidol dose-dependently increased the protein expression of astrocytic NLRP3, NLRP6, caspase-1, caspase-4, and GSDMD. Co-treatment with a histamine H1 receptor agonist, 2-(3-trifluoromethylphenyl) histamine (FMPH), dose-dependently reduced the increased expression of NLRP3, caspase-1 and GSDMD induced by olanzapine, quetiapine, risperidone, or haloperidol. Moreover, olanzapine, quetiapine, risperidone, or haloperidol treatment induced pore formation in the membranes of astrocytes, and these effects were inhibited by FMPH co-treatment. Taken together, antipsychotic treatment activated astrocyte pyroptotic signaling, and these effects may be related to antipsychotic-induced astrocyte death. H1 receptor activation is an effective treatment strategy to suppress antipsychotic-induced astrocyte pyroptosis and inflammation.

19.
Sci Rep ; 12(1): 5502, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365730

RESUMO

Obesity induced by antipsychotics have plagued more than 20 million people worldwide. However, no drug is available to eliminate the obesity induced by antipsychotics. Here we examined the effect and potential mechanisms of a gold nanoclusters (AuNCs) modified by N-isobutyryl-L-cysteine on the obesity induced by olanzapine, the most prescribed but obesogenic antipsychotics, in a rat model. Our results showed that AuNCs completely prevented and reversed the obesity induced by olanzapine and improved glucose metabolism profile in rats. Further mechanism investigations revealed that AuNCs exert its anti-obesity function through inhibition of olanzapine-induced dysfunction of histamine H1 receptor and proopiomelanocortin signaling therefore reducing hyperphagia, and reversing olanzapine-induced inhibition of uncoupling-protein-1 signaling which increases thermogenesis. Together with AuNCs' good biocompatibility, these findings not only provide AuNCs as a promising nanodrug candidate for treating obesity induced by antipsychotics, but also open an avenue for the potential application of AuNCs-based nanodrugs in treating general obesity.


Assuntos
Antipsicóticos , Nanopartículas Metálicas , Animais , Antipsicóticos/farmacologia , Ouro , Humanos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Olanzapina , Ratos
20.
IEEE Trans Neural Netw Learn Syst ; 32(6): 2650-2662, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32706646

RESUMO

Although robust control has been studied for decades, the output-feedback robust control design is still challenging in the control field. This article proposes a new approach to address the output-feedback robust control for continuous-time uncertain systems. First, we transform the robust control problem into an optimal control problem of the nominal linear system with a constructive cost function, which allows simplifying the control design. Then, a modified algebraic Riccati equation (MARE) is constructed by further investigating the corresponding relationship with the state-feedback optimal control. To solve the derived MARE online, the vectorization operation and Kronecker's product are applied to reformulate the output Lyapunov function, and then, a new online data-driven learning method is suggested to learn its solution. Consequently, only the measurable system input and output are used to derive the solution of the MARE. In this case, the output-feedback robust control gain can be obtained without using the unknown system states. The control system stability and convergence of the derived solution are rigorously proved. Two simulation examples are provided to demonstrate the efficacy of the suggested methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA