Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(2)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33298462

RESUMO

Formation of skeletal muscle is among the most striking examples of cellular plasticity in animal tissue development, and while muscle progenitor cells are reprogrammed by epithelial-mesenchymal transition (EMT) to migrate during embryonic development, the regulation of EMT in post-natal myogenesis remains poorly understood. Here, we demonstrate that the long noncoding RNA (lncRNA) Meg3 regulates EMT in myoblast differentiation and skeletal muscle regeneration. Chronic inhibition of Meg3 in C2C12 myoblasts induced EMT, and suppressed cell state transitions required for differentiation. Furthermore, adenoviral Meg3 knockdown compromised muscle regeneration, which was accompanied by abnormal mesenchymal gene expression and interstitial cell proliferation. Transcriptomic and pathway analyses of Meg3-depleted C2C12 myoblasts and injured skeletal muscle revealed a significant dysregulation of EMT-related genes, and identified TGFß as a key upstream regulator. Importantly, inhibition of TGFßR1 and its downstream effectors, and the EMT transcription factor Snai2, restored many aspects of myogenic differentiation in Meg3-depleted myoblasts in vitro We further demonstrate that reduction of Meg3-dependent Ezh2 activity results in epigenetic alterations associated with TGFß activation. Thus, Meg3 regulates myoblast identity to facilitate progression into differentiation.


Assuntos
Plasticidade Celular/genética , Transição Epitelial-Mesenquimal/genética , Mioblastos/citologia , Mioblastos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Adesão Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mesoderma/patologia , Metilação , Camundongos , Mitocôndrias/metabolismo , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Mutação/genética , RNA Longo não Codificante/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Regeneração , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Sensors (Basel) ; 22(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35336566

RESUMO

Partial discharge (PD) is a common phenomenon of insulation aging in air-insulated switchgear and will change the gas composition in the equipment. However, it is still a challenge to diagnose and identify the defect types of PD. This paper conducts enclosed experiments based on gas sensors to obtain the concentration data of the characteristic gases CO, NO2, and O3 under four typical defects. The random forest algorithm with grid search optimization is used for fault identification to explore a method of identifying defect types through gas concentration. The results show that the gases concentration variations do have statistical characteristics, and the RF algorithm can achieve high accuracy in prediction. The combination of a sensor and a machine learning algorithm provides the gas component analysis method a way to diagnose PD in an air-insulated switchgear.

3.
Front Med (Lausanne) ; 11: 1388074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978780

RESUMO

Aims: Vitamin D deficiency (VDD) is prevalent in the population, with inadequate intake, impaired absorption and metabolism as the main causative factors. VDD increases the risk of developing chronic diseases such as type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN), but the molecular mechanisms underlying this phenomenon are not known. The aim of this study was to investigate the association and potential mechanisms of vitamin D levels with the progression of DN by analyzing general clinical data and using bioinformatics methods. Methods: The study included 567 diabetes mellitus type 2 (T2DM) patients from the Rocket Force Characteristic Medical Center as the case group and 221 healthy examinees as the normal control group. T2DM patients were categorized into T2DM, early diabetic nephropathy (EDN), and advanced diabetic nephropathy (ADN) based on the progression of diabetic nephropathy. The renal RNA-seq and scRNA-seq data of patients with DN were mined from public databases, and the differential expression of vitamin D-related genes in normal-EDN-ADN was analyzed by bioinformatics method, protein interaction network was constructed, immune infiltration was evaluated, single cell map was drawn, and potential mechanisms of VD and DN interaction were explored. Results: Chi-square test showed that vitamin D level was significantly negatively correlated with DN progression (p < 0.001). Bioinformatics showed that the expression of vitamin D-related cytochrome P450 family genes was down-regulated, and TLR4 and other related inflammatory genes were abnormally up-regulated with the progression of DN. Vitamin D metabolism disturbance up-regulate "Nf-Kappa B signaling pathway," B cell receptor signaling pathway and other immune regulation and insulin resistance related pathways, and inhibit a variety of metabolic pathways. In addition, vitamin D metabolism disturbance are strongly associated with the development of diabetic cardiomyopathy and several neurological disease complications. Conclusion: VDD or vitamin D metabolism disturbance is positively associated with the severity of renal injury. The mechanisms may involve abnormal regulation of the immune system by vitamin D metabolism disturbance, metabolic suppression, upregulation of insulin resistance and inflammatory signalling pathways.

4.
ACS Nano ; 17(1): 668-677, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36534047

RESUMO

The aqueous zinc (Zn) battery is a safe and eco-friendly energy-storage system. However, the use of Zn metal anodes is impeded by uncontrolled Zn deposition behavior. Herein, we regulate the Zn-ion deposition process for dendrite-free Zn metal anodes using an aminosilane molecular layer with high zincophilic sites and narrow molecule channels. The aminosilane molecular layer causes Zn ions to undergo consecutive processes including being captured by the amine functional groups of aminosilane and diffusing through narrow intermolecular channels before electroplating, which induces partial dehydration of hydrated Zn ions and uniform Zn ion flux, promoting reversible Zn stripping/plating. Through this molecule-induced capture-diffusion-deposition procedure of Zn ions, smooth and compact Zn electrodeposited layers are obtained. Hence, the aminosilane-modified Zn anode has high Coulombic efficiency (∼99.5%), long lifespan (∼3000 h), and high capacity retention in full cells (88.4% for 600 cycles). This strategy not only has great potential for achieving dendrite-free Zn anodes in practical Zn batteries but also suggests an interface-modification principle at the molecular level for other alternative metallic anodes.

5.
Cytotechnology ; 74(3): 371-383, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35733702

RESUMO

OCT4, SOX2 and NANOG (OSN) are the key factors of cell reprogramming, which are involved in the maintenance of stem cell pluripotency. Recently, it has been found that glycolysis plays an important role in the process of somatic-cell-induced reprogramming; however, the synergistic effect of OSN on glycolysis has rarely been reported. In this study, chicken embryonic fibroblasts (CEF) was reprogrammed into induced pluripotent stem cells (iPSCs) by OCT4, SOX2, NANOG and LIN28 reprogramming strategy. RNA-seq showed that chicken iPSCs highly expressed pluripotent genes and the expression of the key genes of glycolysis, such as Hk1, Pfkp and Ldha, was also at a high level, while CEF was much lower. Glycolysis gene expression, glucose uptake and lactate production of CEF and iPSCs were also detected. The results showed that the glycolysis level of iPSCs was higher than that of CEF. ChIP-qPCR showed that SOX2 and NANOG transcription factors were significantly enriched in the promoter regions of Hk1, Pfkp and Ldha, while OCT4 was not. The above results indicated that OCT4, SOX2 and NANOG coordinately regulate glycolysis and participate in somatic-cell-induced reprogramming, thus setting a good foundation for further research on the molecular mechanism of somatic-cell-induced reprogramming. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-022-00530-6.

6.
Nat Commun ; 13(1): 3158, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672315

RESUMO

Electrocatalytic CO2 reduction to value-added hydrocarbon products using metallic copper (Cu) catalysts is a potentially sustainable approach to facilitate carbon neutrality. However, Cu metal suffers from unavoidable and uncontrollable surface reconstruction during electrocatalysis, which can have either adverse or beneficial effects on its electrocatalytic performance. In a break from the current catalyst design path, we propose a strategy guiding the reconstruction process in a favorable direction to improve the performance. Typically, the controlled surface reconstruction is facilely realized using an electrolyte additive, ethylenediamine tetramethylenephosphonic acid, to substantially promote CO2 electroreduction to CH4 for commercial polycrystalline Cu. As a result, a stable CH4 Faradaic efficiency of 64% with a partial current density of 192 mA cm-2, thus enabling an impressive CO2-to-CH4 conversion rate of 0.25 µmol cm-2 s-1, is achieved in an alkaline flow cell. We believe our study will promote the exploration of electrochemical reconstruction and provide a promising route for the discovery of high-performance electrocatalysts.

7.
Antibiotics (Basel) ; 9(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291557

RESUMO

A total of 71 patients with Lyme disease were identified for analysis in whom treatment with disulfiram was initiated between 15 March 2017 and 15 March 2020. Four patients were lost to follow-up, leaving 67 evaluable patients. Our retrospective review found patients to fall into a "high-dose" group (≥4 mg/kg/day) and a "low-dose" group (<4 mg/kg/day). In total, 62 of 67 (92.5%) patients treated with disulfiram were able to endorse a net benefit of the treatment with regard to their symptoms. Moreover, 12 of 33 (36.4%) patients who completed one or two courses of "high-dose" therapy enjoyed an "enduring remission", defined as remaining clinically well for ≥6 months without further anti-infective treatment. The most common adverse reactions from disulfiram treatment in the high-dose group were fatigue (66.7%), psychiatric symptoms (48.5%), peripheral neuropathy (27.3%), and mild to moderate elevation of liver enzymes (15.2%). We observed that although patients on high dose experienced a higher risk for adverse reactions than those on a low dose, high-dose patients were significantly more likely to achieve enduring remission.

8.
ACS Appl Mater Interfaces ; 10(40): 34592-34603, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30226365

RESUMO

As a crucial component of data terminal acquisition devices, flexible strain sensor has shown promising applications in numerous fields, such as healthcare, bodynet, the intelligent traffic system, and the robotic system. For stretchable strain sensor, it remains a huge challenge to realize a fine balance of wide detection range and high sensitivity. Here, an electrically conductive carbon nanotube/thermoplastic polyurethane fiber with a multilayered, hollow, and monolith structure, accompanying high stretchability (up to 476% strain) and low density (about 0.46 g/cm3) is fabricated through a facile coaxial wet-spun assembly strategy. The as-prepared fibers with a designed independent sensitive zone and flexible supporting zone possess an ultralow percolation threshold (0.17 wt %) and a tunable size and structure. This structure endows the fiber with a good integration of adequate flexibility, suitable strength, and high elongation at break for wearable electronics. The fiber, which is then assembled as a strain sensor, realizes the perfect combination of the wide sensing range (>350% strain), high sensitivity (gauge factor (GF) = 166.7 at 350% strain), and excellent working durability (>10 000 cycles). Our sensor could also detect small compressing deformations (0.35% N-1 at 0.025-50 N) by capturing the resistance change of the fiber with superior stability. The highly stretchable, light weight, and multilayered fiber with the designed hollow-monolith structure provides a new route for the preparation of high-performance wearable electronics.

9.
ACS Appl Mater Interfaces ; 9(48): 42266-42277, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29131573

RESUMO

Flexible and lightweight carbon nanotube (CNT)/thermoplastic polyurethane (TPU) conductive foam with a novel aligned porous structure was fabricated. The density of the aligned porous material was as low as 0.123 g·cm-3. Homogeneous dispersion of CNTs was achieved through the skeleton of the foam, and an ultralow percolation threshold of 0.0023 vol % was obtained. Compared with the disordered foam, mechanical properties of the aligned foam were enhanced and the piezoresistive stability of the flexible foam was improved significantly. The compression strength of the aligned TPU foam increases by 30.7% at the strain of 50%, and the stress of the aligned foam is 22 times that of the disordered foam at the strain of 90%. Importantly, the resistance variation of the aligned foam shows a fascinating linear characteristic under the applied strain until 77%, which would benefit the application of the foam as a desired pressure sensor. During multiple cyclic compression-release measurements, the aligned conductive CNT/TPU foam represents excellent reversibility and reproducibility in terms of resistance. This nice capability benefits from the aligned porous structure composed of ladderlike cells along the orientation direction. Simultaneously, the human motion detections, such as walk, jump, squat, etc. were demonstrated by using our flexible pressure sensor. Because of the lightweight, flexibility, high compressibility, excellent reversibility, and reproducibility of the conductive aligned foam, the present study is capable of providing new insights into the fabrication of a high-performance pressure sensor.

11.
Nanoscale ; 8(26): 12977-89, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27304516

RESUMO

Thermoplastic polyurethane (TPU) based conductive polymer composites (CPCs) with a reduced percolation threshold and tunable resistance-strain sensing behavior were obtained through the addition of synergistic carbon nanotubes (CNT) and graphene bifillers. The percolation threshold of graphene was about 0.006 vol% when the CNT content was fixed at 0.255 vol% that is below the percolation threshold of CNT/TPU nanocomposites. The synergistic effect between graphene and CNT was identified using the excluded volume theory. Graphene acted as a 'spacer' to separate the entangled CNTs from each other and the CNT bridged the broad gap between individual graphene sheets, which was beneficial for the dispersion of CNT and formation of effective conductive paths, leading to better electrical conductivity at a lower conductive filler content. Compared with the dual-peak response pattern of the CNT/TPU based strain sensors, the CPCs with hybrid conductive fillers displayed single-peak response patterns under small strain, indicating good tunability with the synergistic effect of CNT and graphene. Under larger strain, prestraining was adopted to regulate the conductive network, and better tunable single-peak response patterns were also obtained. The CPCs also showed good reversibility and reproductivity under cyclic extension. This study paves the way for the fabrication of CPC based strain sensors with good tunability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA