Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(1): e0146521, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34780266

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the most fatal diseases in the world. Methylenetetrahydrofolate reductase (MTHFR) catalyzes the production of 5-methyltetrahydrofolate (5-CH3-THF), which is required for the de novo biosynthesis of methionine in bacteria. Here, we identified Rv2172c as an MTHFR in M. tuberculosis through in vitro and in vivo analyses and determined that the protein is essential for the in vitro growth of the bacterium. Subsequently, we constructed rv2172c R159N and L214A mutants in M. tuberculosis and found that these mutants were more sensitive to the antifolates para-aminosalicylic acid (PAS) and sulfamethoxazole (SMX). Combining biochemical and genetic methods, we found that rv2172c R159N or L214A mutation impaired methionine production, leading to increased susceptibility of M. tuberculosis to PAS, which was largely restored by adding exogenous methionine. Moreover, overexpression of rv2172c in M. tuberculosis could increase methionine production and lead to PAS resistance. This research is the first to identify an MTHFR in M. tuberculosis and reveals that the activity of this enzyme is associated with susceptibility to antifolates. These findings have particular value for antitubercular drug design for the treatment of drug-resistant TB.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Ácido Aminossalicílico/metabolismo , Ácido Aminossalicílico/farmacologia , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/metabolismo
2.
Acta Pharmacol Sin ; 41(9): 1167-1177, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32737471

RESUMO

Human infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) and there is no cure currently. The 3CL protease (3CLpro) is a highly conserved protease which is indispensable for CoVs replication, and is a promising target for development of broad-spectrum antiviral drugs. In this study we investigated the anti-SARS-CoV-2 potential of Shuanghuanglian preparation, a Chinese traditional patent medicine with a long history for treating respiratory tract infection in China. We showed that either the oral liquid of Shuanghuanglian, the lyophilized powder of Shuanghuanglian for injection or their bioactive components dose-dependently inhibited SARS-CoV-2 3CLpro as well as the replication of SARS-CoV-2 in Vero E6 cells. Baicalin and baicalein, two ingredients of Shuanghuanglian, were characterized as the first noncovalent, nonpeptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography was distinctly different from those of known 3CLpro inhibitors. Baicalein was productively ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to effectively prevent substrate access to the catalytic dyad within the active site. Overall, this study provides an example for exploring the in vitro potency of Chinese traditional patent medicines and effectively identifying bioactive ingredients toward a specific target, and gains evidence supporting the in vivo studies of Shuanghuanglian oral liquid as well as two natural products for COVID-19 treatment.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus , Medicamentos de Ervas Chinesas , Flavanonas , Flavonoides , Pandemias , Pneumonia Viral , Replicação Viral/efeitos dos fármacos , Administração Oral , Animais , Antivirais/química , Antivirais/farmacologia , Betacoronavirus/fisiologia , COVID-19 , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Ensaios Enzimáticos , Flavanonas/química , Flavanonas/farmacocinética , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero , Replicação Viral/fisiologia
3.
Acta Pharmacol Sin ; 40(6): 850-858, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30796354

RESUMO

Serine/threonine phosphatase (Stp1) is a member of the bacterial Mg2+- or Mn2+- dependent protein phosphatase/protein phosphatase 2C family, which is involved in the regulation of Staphylococcus aureus virulence. Aurintricarboxylic acid (ATA) is a known Stp1 inhibitor with an IC50 of 1.03 µM, but its inhibitory mechanism has not been elucidated in detail because the Stp1-ATA cocrystal structure has not been determined thus far. In this study, we performed 400 ns molecular dynamics (MD) simulations of the apo-Stp1 and Stp1-ATA complex models. During MD simulations, the flap subdomain of the Stp1-ATA complex experienced a clear conformational transition from an open state to a closed state, whereas the flap domain of apo-Stp1 changed from an open state to a semi-open state. In the Stp1-ATA complex model, the hydrogen bond (H-bond) between D137 and N142 disappeared, whereas critical H-bond interactions were formed between Q160 and H13, Q160/R161 and ATA, as well as N162 and D198. Finally, four residues (D137, N142, Q160, and R161) in Stp1 were mutated to alanine and the mutant enzymes were assessed using phosphate enzyme activity assays, which confirmed their important roles in maintaining Stp1 activity. This study indicated the inhibitory mechanism of ATA targeting Stp1 using MD simulations and sheds light on the future design of allosteric Stp1 inhibitors.


Assuntos
Ácido Aurintricarboxílico/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Fosfoproteínas Fosfatases/antagonistas & inibidores , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Ácido Aurintricarboxílico/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mutação , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA