Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 78, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193497

RESUMO

BACKGROUND: Glucosinolates (GSLs) play important roles in defending against exogenous damage and regulating physiological activities in plants. However, GSL accumulation patterns and molecular regulation mechanisms are largely unknown in Isatis indigotica Fort. RESULTS: Ten GSLs were identified in I. indigotica, and the dominant GSLs were epiprogoitrin (EPI) and indole-3-methyl GSL (I3M), followed by progoitrin (PRO) and gluconapin (GNA). The total GSL content was highest (over 20 µmol/g) in reproductive organs, lowest (less than 1.0 µmol/g) in mature organs, and medium in fresh leaves (2.6 µmol/g) and stems (1.5 µmol/g). In the seed germination process, the total GSL content decreased from 27.2 µmol/g (of seeds) to 2.7 µmol/g (on the 120th day) and then increased to 4.0 µmol/g (180th day). However, the content of indole GSL increased rapidly in the first week after germination and fluctuated between 1.13 µmol/g (28th day) and 2.82 µmol/g (150th day). Under the different elicitor treatments, the total GSL content increased significantly, ranging from 2.9-fold (mechanical damage, 3 h) to 10.7-fold (MeJA, 6 h). Moreover, 132 genes were involved in GSL metabolic pathways. Among them, no homologs of AtCYP79F2 and AtMAM3 were identified, leading to a distinctive GSL profile in I. indigotica. Furthermore, most genes involved in the GSL metabolic pathway were derived from tandem duplication, followed by dispersed duplication and segmental duplication. Purifying selection was observed, although some genes underwent relaxed selection. In addition, three tandem-arrayed GSL-OH genes showed different expression patterns, suggesting possible subfunctionalization during evolution. CONCLUSIONS: Ten different GSLs with their accumulation patterns and 132 genes involved in the GSL metabolic pathway were explored, which laid a foundation for the study of GSL metabolism and regulatory mechanisms in I. indigotica.


Assuntos
Glucosinolatos/metabolismo , Isatis/crescimento & desenvolvimento , Isatis/metabolismo , Acetatos/farmacologia , Cromatografia Líquida , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas , Glucosinolatos/análise , Isatis/efeitos dos fármacos , Redes e Vias Metabólicas , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometria de Massas em Tandem
2.
Int J Mol Sci ; 21(6)2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-32235744

RESUMO

Auxin is one of the most critical hormones in plants. YUCCA (Tryptophan aminotransferase of Arabidopsis (TAA)/YUCCA) enzymes catalyze the key rate-limiting step of the tryptophan-dependent auxin biosynthesis pathway, from IPA (Indole-3-pyruvateacid) to IAA (Indole-3-acetic acid). Here, 13 YUCCA family genes were identified from Isatis indigotica, which were divided into four categories, distributing randomly on chromosomes (2n = 14). The typical and conservative motifs, including the flavin adenine dinucleotide (FAD)-binding motif and flavin-containing monooxygenases (FMO)-identifying sequence, existed in the gene structures. IiYUCCA genes were expressed differently in different organs (roots, stems, leaves, buds, flowers, and siliques) and developmental periods (7, 21, 60, and 150 days after germination). Taking IiYUCCA6-1 as an example, the YUCCA genes functions were discussed. The results showed that IiYUCCA6-1 was sensitive to PEG (polyethylene glycol), cold, wounding, and NaCl treatments. The over-expressed tobacco plants exhibited high auxin performances, and some early auxin response genes (NbIAA8, NbIAA16, NbGH3.1, and NbGH3.6) were upregulated with increased IAA content. In the dark, the contents of total chlorophyll and hydrogen peroxide in the transgenic lines were significantly lower than in the control group, with NbSAG12 downregulated and some delayed leaf senescence characteristics, which delayed the senescence process to a certain extent. The findings provide comprehensive insight into the phylogenetic relationships, chromosomal distributions, and expression patterns and functions of the YUCCA gene family in I. indigotica.


Assuntos
Isatis/genética , Oxigenases de Função Mista/genética , Família Multigênica , Proteínas de Plantas/genética , Triptofano Transaminase/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Isatis/metabolismo , Oxigenases de Função Mista/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Triptofano Transaminase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA