Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 124(9): 5505-5616, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38626459

RESUMO

The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Polímeros , Polímeros/química , Nanopartículas/química , Humanos , Animais , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico
2.
Biomed Chromatogr ; : e5963, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030833

RESUMO

The aim of this work was to investigate the therapeutic effect of modified Shisiwei Jianzhong Decoction (SJD) on aplastic anemia (AA) and its potential pharmacological mechanism from the perspective of mitophagy. A comprehensive approach combining network pharmacology, mendelian randomization, molecular docking and animal experiments was applied to evaluate the properties of SJD against AA. By integrating multiple databases, it was determined that SJD exerted its therapeutic effect on AA by targeting three key targets [mammalian target of rapamycin (MTOR), poly(ADP-ribose) polymerase 1 (PARP1) and Sirtuin 1 (SIRT1)] through four core compounds (quercetin, resveratrol, genistein and curcumin). Mendelian randomization analysis identified MTOR as a risk factor for AA occurrence while PARP1 was a protective factor. Results of animal experiments showed that SJD improved peripheral blood counts and promoted the proliferation of hematopoietic stem cells. Mechanistically, SJD, especially at high dose, played a therapeutic role in AA by activating mitophagy-related proteins PTEN induced kinase 1 (PINK1)/Parkin and inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase (AKT)/MTOR pathway. This study revealed for the first time the core chemical composition of SJD and its pharmacological effects against AA, which can restore hematopoietic function by activating mitophagy. The results provide inspiration for the clinical application of traditional Chinese medicine in AA treatment.

3.
ACS Omega ; 8(50): 47773-47780, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144105

RESUMO

High-entropy alloys have long been used as a new type of alloy material and have attracted widespread concern because of their excellent performance, including their stable microstructure and particular catalytic properties. To design a safer preparation method, we report a novel approach targeting green synthesis, using tea polyphenols to prepare PtPdNiFeCu high-entropy alloy nanoparticles for glucose detection. The fabricated sensors were characterized by transmission electron microscopy and electrochemical experiments. Physical characterization showed that the nanoparticle has better dispersibility, and the average particle size is 7.5 nm. The electrochemical results showed that Tp-PtPdNiFeCu HEA-NPs had a high sensitivity of 1.264 µA mM-1 cm-2, a low detection limit of 4.503 µM, and a wide detection range of 0 - 10 mM. In addition, the sensor has better stability and selectivity for glucose detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA