Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(6): 1437-52, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046443

RESUMO

Germ cells are vital for transmitting genetic information from one generation to the next and for maintaining the continuation of species. Here, we analyze the transcriptome of human primordial germ cells (PGCs) from the migrating stage to the gonadal stage at single-cell and single-base resolutions. Human PGCs show unique transcription patterns involving the simultaneous expression of both pluripotency genes and germline-specific genes, with a subset of them displaying developmental-stage-specific features. Furthermore, we analyze the DNA methylome of human PGCs and find global demethylation of their genomes. Approximately 10 to 11 weeks after gestation, the PGCs are nearly devoid of any DNA methylation, with only 7.8% and 6.0% of the median methylation levels in male and female PGCs, respectively. Our work paves the way toward deciphering the complex epigenetic reprogramming of the germline with the aim of restoring totipotency in fertilized oocytes.


Assuntos
Metilação de DNA , Células Germinativas/metabolismo , Transcriptoma , Movimento Celular , Cromossomos Humanos X , Análise por Conglomerados , Embrião de Mamíferos/metabolismo , Feminino , Histonas/metabolismo , Humanos , Masculino , Análise de Componente Principal , Fatores de Transcrição SOX/metabolismo
2.
Genome Res ; 33(2): 247-260, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828586

RESUMO

Dynamic chromatin structure acts as the regulator of transcription program in crucial processes including cancer and cell development, but a unified framework for characterizing chromatin structural evolution remains to be established. Here, we performed graph inferences on Hi-C data sets and derived the chromatin contact networks. We discovered significant decreases in information transmission efficiencies in chromatin of colorectal cancer (CRC) and T-cell acute lymphoblastic leukemia (T-ALL) compared to corresponding normal controls through graph statistics. Using network embedding in the Poincaré disk, the hierarchy depths of chromatin from CRC and T-ALL patients were found to be significantly shallower compared to their normal controls. A reverse trend of change in chromatin structure was observed during early embryo development. We found tissue-specific conservation of hierarchy order in chromatin contact networks. Our findings reveal the top-down hierarchy of chromatin organization, which is significantly attenuated in cancer.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Genoma , Cromatina , Diferenciação Celular
3.
Genome Res ; 33(8): 1354-1368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491077

RESUMO

The interactome networks at the DNA, RNA, and protein levels are crucial for cellular functions, and the diverse variations of these networks are heavily involved in the establishment of different cell states. We have developed a diffusion-based method, Hi-C to geometry (CTG), to obtain reliable geometric information on the chromatin from Hi-C data. CTG produces a consistent and reproducible framework for the 3D genomic structure and provides a reliable and quantitative understanding of the alterations of genomic structures under different cellular conditions. The genomic structure yielded by CTG serves as an architectural blueprint of the dynamic gene regulatory network, based on which cell-specific correspondence between gene-gene and corresponding protein-protein physical interactions, as well as transcription correlation, is revealed. We also find that gene fusion events are significantly enriched between genes of short CTG distances and are thus close in 3D space. These findings indicate that 3D chromatin structure is at least partially correlated with downstream processes such as transcription, gene regulation, and even regulatory networking through affecting protein-protein interactions.


Assuntos
Cromatina , Redes Reguladoras de Genes , Cromatina/genética , Regulação da Expressão Gênica , Cromossomos , DNA
4.
J Phys Chem A ; 128(21): 4378-4390, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38759697

RESUMO

Theoretical studies on chemical reaction mechanisms have been crucial in organic chemistry. Traditionally, calculating the manually constructed molecular conformations of transition states for chemical reactions using quantum chemical calculations is the most commonly used method. However, this way is heavily dependent on individual experience and chemical intuition. In our previous study, we proposed a research paradigm that used enhanced sampling in molecular dynamics simulations to study chemical reactions. This approach can directly simulate the entire process of a chemical reaction. However, the computational speed limited the use of high-precision potential energy functions for simulations. To address this issue, we presented a scheme for training high-precision force fields for molecular modeling using a previously developed graph-neural-network-based molecular model, molecular configuration transformer. This potential energy function allowed for highly accurate simulations at a low computational cost, leading to more precise calculations of the mechanism of chemical reactions. We applied this approach to study a Claisen rearrangement reaction and a carbonyl insertion reaction catalyzed by manganese.

5.
Nature ; 563(7729): E18, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30135587

RESUMO

In this Letter, the links to Supplementary Videos 5, 7, 9 and 10 were incorrect, and there were some formatting errors in the Supplementary Video legends. These errors have been corrected online.

6.
Nature ; 557(7707): 701-705, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29760468

RESUMO

Ion hydration and transport at interfaces are relevant to a wide range of applied fields and natural processes1-5. Interfacial effects are particularly profound in confined geometries such as nanometre-sized channels6-8, where the mechanisms of ion transport in bulk solutions may not apply9,10. To correlate atomic structure with the transport properties of hydrated ions, both the interfacial inhomogeneity and the complex competing interactions among ions, water and surfaces require detailed molecular-level characterization. Here we constructed individual sodium ion (Na+) hydrates on a NaCl(001) surface by progressively attaching single water molecules (one to five) to the Na+ ion using a combined scanning tunnelling microscopy and noncontact atomic force microscopy system. We found that the Na+ ion hydrated with three water molecules diffuses orders of magnitude more quickly than other ion hydrates. Ab initio calculations revealed that such high ion mobility arises from the existence of a metastable state, in which the three water molecules around the Na+ ion can rotate collectively with a rather small energy barrier. This scenario would apply even at room temperature according to our classical molecular dynamics simulations. Our work suggests that anomalously high diffusion rates for specific hydration numbers of ions are generally determined by the degree of symmetry match between the hydrates and the surface lattice.

7.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38506297

RESUMO

Activator protein-1 (AP-1) comprises one of the largest and most evolutionary conserved families of ubiquitous eukaryotic transcription factors that act as a pioneer factor. Diversity in DNA binding interaction of AP-1 through a conserved basic-zipper (bZIP) domain directs in-depth understanding of how AP-1 achieves its DNA binding selectivity and consequently gene regulation specificity. Here, we address the structural and dynamical aspects of the DNA target recognition process of AP-1 using microsecond-long atomistic simulations based on the structure of the human AP-1 FosB/JunD bZIP-DNA complex. Our results show the unique role of DNA shape features in selective base specific interactions, characteristic ion population, and solvation properties of DNA grooves to form the motif sequence specific AP-1-DNA complex. The TpG step at the two terminals of the AP-1 site plays an important role in the structural adjustment of DNA by modifying the helical twist in the AP-1 bound state. We addressed the role of intrinsic motion of the bZIP domain in terms of opening and closing gripper motions of DNA binding helices, in target site recognition and binding of AP-1 factors. Our observations suggest that binding to the cognate motif in DNA is mainly accompanied with the precise adjustment of closing gripper motion of DNA binding helices of the bZIP domain.


Assuntos
DNA , Fator de Transcrição AP-1 , Humanos , Fator de Transcrição AP-1/metabolismo , Motivos de Nucleotídeos , DNA/química , Sítios de Ligação , Ligação Proteica
8.
J Chem Phys ; 160(5)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38341710

RESUMO

Within the confines of a densely populated cell nucleus, chromatin undergoes intricate folding, forming loops, domains, and compartments under the governance of topological constraints and phase separation. This coordinated process inevitably introduces interference between different folding strategies. In this study, we model interphase chromatins as block copolymers with hetero-hierarchical loops within a confined system. Employing dissipative particle dynamics simulations and scaling analysis, we aim to explain how the structure and distribution of loop domains modulate the microphase separation of chromatins. Our results highlight the correlation between the microphase separation of the copolymer and the length, heterogeneity, and hierarchically nested levels of the loop domains. This correlation arises from steric repulsion intrinsic to loop domains. The steric repulsion induces variations in chain stiffness (including local orientation correlations and the persistence length), thereby influencing the degree of phase separation. Through simulations of block copolymers with distinct groups of hetero-hierarchical loop anchors, we successfully reproduce changes in phase separation across diverse cell lines, under fixed interaction parameters. These findings, in qualitative alignment with Hi-C data, suggest that the variations of loop constraints alone possess the capacity to regulate higher-order structures and the gene expressions of interphase chromatins.


Assuntos
Núcleo Celular , Cromatina , Polímeros/química
9.
J Chem Inf Model ; 63(14): 4355-4363, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37386792

RESUMO

Virtual screening, including molecular docking, plays an essential role in drug discovery. Many traditional and machine-learning-based methods are available to fulfill the docking task. However, the traditional docking methods are normally extensively time-consuming, and their performance in blind docking remains to be improved. Although the runtime of docking based on machine learning is significantly decreased, their accuracy is still limited. In this study, we take advantage of both traditional and machine-learning-based methods and present a method, deep site and docking pose (DSDP), to improve the performance of blind docking. For traditional blind docking, the entire protein is covered by a cube, and the initial positions of ligands are randomly generated in this cube. In contrast, DSDP can predict the binding site of proteins and provide an accurate searching shape and initial positions for further conformational sampling. The sampling task of DSDP makes use of the score function and a similar but modified searching strategy of AutoDock Vina, accelerated by implementation in GPUs. We systematically compare its performance in redocking, blind docking, and virtual screening tasks with state-of-the-art methods, including AutoDock Vina, GNINA, QuickVina, SMINA, and DiffDock. In the blind docking task, DSDP reaches a 29.8% top-1 success rate (root-mean-squared deviation < 2 Å) on an unbiased and challenging test dataset with 1.2 s wall-clock computational time per system. Its performances on the DUD-E dataset and the time-split PDBBind dataset used in EquiBind, TANKBind, and DiffDock are also evaluated, presenting a 57.2 and 41.8% top-1 success rate with 0.8 and 1.0 s per system, respectively.


Assuntos
Descoberta de Drogas , Proteínas , Simulação de Acoplamento Molecular , Proteínas/química , Sítios de Ligação , Aprendizado de Máquina , Ligantes , Ligação Proteica
10.
Proc Natl Acad Sci U S A ; 117(26): 15036-15046, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541019

RESUMO

Mammalian DNA replication is initiated at numerous replication origins, which are clustered into thousands of replication domains (RDs) across the genome. However, it remains unclear whether the replication origins within each RD are activated stochastically or preferentially near certain chromatin features. To understand how DNA replication in single human cells is regulated at the sub-RD level, we directly visualized and quantitatively characterized the spatiotemporal organization, morphology, and in situ epigenetic signatures of individual replication foci (RFi) across S-phase at superresolution using stochastic optical reconstruction microscopy. Importantly, we revealed a hierarchical radial pattern of RFi propagation dynamics that reverses directionality from early to late S-phase and is diminished upon caffeine treatment or CTCF knockdown. Together with simulation and bioinformatic analyses, our findings point to a "CTCF-organized REplication Propagation" (CoREP) model, which suggests a nonrandom selection mechanism for replication activation at the sub-RD level during early S-phase, mediated by CTCF-organized chromatin structures. Collectively, these findings offer critical insights into the key involvement of local epigenetic environment in coordinating DNA replication across the genome and have broad implications for our conceptualization of the role of multiscale chromatin architecture in regulating diverse cell nuclear dynamics in space and time.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Replicação do DNA , Fator de Ligação a CCCTC/genética , Cromatina/genética , Epigenômica , Humanos , Fase S
11.
Phys Chem Chem Phys ; 24(38): 23840-23848, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36165176

RESUMO

Diffusion-based translocation along DNA or RNA molecules is essential for genome regulatory proteins to execute their biological functions. The reduced dimensionality of the searching process makes the proteins bind specific target sites at a "faster-than-diffusion-controlled rate". We herein report a photoresponsive slider-track diffusion system capable of self-assembly rate acceleration, which consists of (-)-camphorsulfonic acid, 4-(4'-n-octoxylphenylazo)benzenesulfonic acid, and isotactic poly(2-vinylpyridine). The protonated pyridine rings act as the footholds for anionic azo sliders to diffusively bind and slide along polycationic tracks via electrostatic interactions. Ultraviolet light triggers the trans to cis isomerization and aggregation of azo sliders, which can be monitored by multiple spectroscopic methods without labeling. The presence of vinyl polymer track increases the aggregation rate of cis azobenzene up to ∼20 times, depending on the stereoregularity of the polymer chain, the acid/base ratio and the addition of salt. This system has a feature of simplicity, monitorability, controllability, and could find applications in designing molecular machines with desired functionalities.


Assuntos
Compostos Azo , DNA , Compostos Azo/química , DNA/química , Polímeros/química , Piridinas , RNA , Raios Ultravioleta
12.
Phys Chem Chem Phys ; 23(11): 6888-6895, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33729229

RESUMO

Combining reinforcement learning (RL) and molecular dynamics (MD) simulations, we propose a machine-learning approach, called RL‡, to automatically unravel chemical reaction mechanisms. In RL‡, locating the transition state of a chemical reaction is formulated as a game, and two functions are optimized, one for value estimation and the other for policy making, to iteratively improve our chance of winning this game. Both functions can be approximated by deep neural networks. By virtue of RL‡, one can directly interpret the reaction mechanism according to the value function. Meanwhile, the policy function allows efficient sampling of the transition path ensemble, which can be further used to analyze reaction dynamics and kinetics. Through multiple experiments, we show that RL‡ can be trained tabula rasa hence allowing us to reveal chemical reaction mechanisms with minimal subjective biases.

13.
J Phys Chem A ; 125(16): 3288-3306, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33872010

RESUMO

To understand the microsolvation of alkaline-earth dihalides in water and provide information about the dependence of solvation processes on different halides, we investigated CaBr2(H2O)n-, CaI2(H2O)n-, and CaF2(H2O)n- (n = 0-6) clusters using size-selected anion photoelectron spectroscopy and conducted theoretical calculations on these clusters and their neutrals. The results are compared with those of CaCl2(H2O)n-/0 clusters reported previously. It is found that the vertical detachment energies (VDEs) of CaCl2(H2O)n-, CaBr2(H2O)n-, and CaI2(H2O)n- show a similar trend with increasing cluster size, while the VDEs of CaF2(H2O)n- show a different trend. The VDEs of CaF2(H2O)n- are much lower than those of CaCl2(H2O)n-, CaBr2(H2O)n-, and CaI2(H2O)n-. A detailed probing of the structures shows that a significant increase of the Ca-X distance (separation of Ca2+-X- ion pair) in CaCl2(H2O)n-/0, CaBr2(H2O)n-/0, and CaI2(H2O)n-/0 clusters occurred at about n = 5. However, for CaF2(H2O)n-/0, no abrupt change of the Ca-F distance with the increasing cluster size has been observed. In CaCl2(H2O)6-/0, CaBr2(H2O)6-/0, and CaI2(H2O)6-/0, the Ca atom coordinates directly with 5 H2O molecules. However, in CaF2(H2O)n-/0, the Ca atom coordinates directly with only 2 or 3 H2O molecules. The similarity or differences in the structures and coordination numbers are consistent with the fact that CaCl2, CaBr2, and CaI2 have similar solubility, while CaF2 has much lower solubility.

14.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572740

RESUMO

The recent development of sequencing technology and imaging methods has provided an unprecedented understanding of the inter-phase chromatin folding in mammalian nuclei. It was found that chromatin folds into topological-associated domains (TADs) of hundreds of kilo base pairs (kbps), and is further divided into spatially segregated compartments (A and B). The compartment B tends to be located near to the periphery or the nuclear center and interacts with other domains of compartments B, while compartment A tends to be located between compartment B and interacts inside the domains. These spatial domains are found to highly correlate with the mosaic CpG island (CGI) density. High CGI density corresponds to compartments A and small TADs, and vice versa. The variation of contact probability as a function of sequential distance roughly follows a power-law decay. Different chromosomes tend to segregate to occupy different chromosome territories. A model that can integrate these properties at multiple length scales and match many aspects is highly desired. Here, we report a DNA-sequence based coarse-grained block copolymer model that considers different interactions between blocks of different CGI density, interactions of TAD formation, as well as interactions between chromatin and the nuclear envelope. This model captures the various single-chromosome properties and partially reproduces the formation of chromosome territories.


Assuntos
Cromatina/química , DNA/química , Animais , Sequência de Bases , Núcleo Celular/química , Núcleo Celular/genética , Cromatina/genética , Montagem e Desmontagem da Cromatina , Simulação por Computador , Ilhas de CpG , DNA/genética , Humanos , Modelos Genéticos , Conformação de Ácido Nucleico , Probabilidade
15.
Phys Chem Chem Phys ; 22(36): 20189-20201, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32966415

RESUMO

Recent experiments have provided unprecedented details on the hierarchical organization of the chromatin 3D structure and thus a great opportunity for understanding the mechanisms behind chromatin folding. As a bridge between experimental results and physical theory, coarse-grained polymer models of chromatin are of great value. Here, we review several popular models of chromatin folding, including the fractal globule model, loop models (the random loop model, the dynamic loop model, and the loop extrusion model), the string-and-binder switch model, and the block copolymer model. Physical models are still in great need to explain a larger variety of chromatin folding properties, especially structural features at different scales, their relation to the heterogeneous nature of the DNA sequence, and the highly dynamic nature of chromatin folding.


Assuntos
Cromatina/química , DNA/química , Modelos Químicos , Polímeros/química , Conformação de Ácido Nucleico , Dobramento de Proteína
16.
J Phys Chem A ; 124(34): 6745-6763, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32786668

RESUMO

Deep learning is transforming many areas in science, and it has great potential in modeling molecular systems. However, unlike the mature deployment of deep learning in computer vision and natural language processing, its development in molecular modeling and simulations is still at an early stage, largely because the inductive biases of molecules are completely different from those of images or texts. Footed on these differences, we first reviewed the limitations of traditional deep learning models from the perspective of molecular physics and wrapped up some relevant technical advancement at the interface between molecular modeling and deep learning. We do not focus merely on the ever more complex neural network models; instead, we introduce various useful concepts and ideas brought by modern deep learning. We hope that transacting these ideas into molecular modeling will create new opportunities. For this purpose, we summarized several representative applications, ranging from supervised to unsupervised and reinforcement learning, and discussed their connections with the emerging trends in deep learning. Finally, we give an outlook for promising directions which may help address the existing issues in the current framework of deep molecular modeling.

17.
J Chem Phys ; 153(17): 174115, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167648

RESUMO

Molecular simulations are widely applied in the study of chemical and bio-physical problems. However, the accessible timescales of atomistic simulations are limited, and extracting equilibrium properties of systems containing rare events remains challenging. Two distinct strategies are usually adopted in this regard: either sticking to the atomistic level and performing enhanced sampling or trading details for speed by leveraging coarse-grained models. Although both strategies are promising, either of them, if adopted individually, exhibits severe limitations. In this paper, we propose a machine-learning approach to ally both strategies so that simulations on different scales can benefit mutually from their crosstalks: Accurate coarse-grained (CG) models can be inferred from the fine-grained (FG) simulations through deep generative learning; in turn, FG simulations can be boosted by the guidance of CG models via deep reinforcement learning. Our method defines a variational and adaptive training objective, which allows end-to-end training of parametric molecular models using deep neural networks. Through multiple experiments, we show that our method is efficient and flexible and performs well on challenging chemical and bio-molecular systems.


Assuntos
Aprendizado Profundo , Modelos Químicos , Simulação de Dinâmica Molecular , Redes Neurais de Computação , Termodinâmica
18.
J Chem Phys ; 153(13): 134301, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33032412

RESUMO

In order to understand the hydration processes of BaCl2, we investigated BaCl2(H2O)n - (n = 0-5) clusters using size-selected anion photoelectron spectroscopy and theoretical calculations. The structures of neutral BaCl2(H2O)n clusters up to n = 8 were also investigated by theoretical calculations. It is found that in BaCl2(H2O)n -/0, the Ba-Cl distances increase very slowly with the cluster size. The hydration process is not able to induce the breaking of a Ba-Cl bond in the cluster size range (n = 0-8) studied in this work. In small BaCl2(H2O)n clusters with n ≤ 5, the Ba atom has a coordination number of n + 2; however, in BaCl2(H2O)6-8 clusters, the Ba atom coordinates with two Cl atoms and (n - 1) water molecules, and it has a coordination number of n + 1. Unlike the previously studied MgCl2(H2O)n - and CaCl2(H2O)n -, negative charge-transfer-to-solvent behavior has not been observed for BaCl2(H2O)n -, and the excess electron of BaCl2(H2O)n - is mainly localized on the Ba atom rather on the water molecules. No observation of Ba2+-Cl- separation in current work is consistent with the lower solubility of BaCl2 compared to MgCl2 and CaCl2. Considering the BaCl2/H2O mole ratio in the saturated solution, one would expect that about 20-30 H2O molecules are needed to break the first Ba-Cl bond in BaCl2.

19.
Nucleic Acids Res ; 46(18): 9367-9383, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30053116

RESUMO

The high-order chromatin structure plays a non-negligible role in gene regulation. However, the mechanism, especially the sequence dependence for the formation of varied chromatin structures in different cells remains to be elucidated. As the nucleotide distributions in human and mouse genomes are highly uneven, we identified CGI (CpG island) forest and prairie genomic domains based on CGI densities of a species, dividing the genome into two sequentially, epigenetically, and transcriptionally distinct regions. These two megabase-sized domains also spatially segregate to different extents in different cell types. Forests and prairies show enhanced segregation from each other in development, differentiation, and senescence, meanwhile the multi-scale forest-prairie spatial intermingling is cell-type specific and increases in differentiation, helping to define cell identity. We propose that the phase separation of the 1D mosaic sequence in space serves as a potential driving force, and together with cell type specific epigenetic marks and transcription factors, shapes the chromatin structure in different cell types. The mosaicity in genome of different species in terms of forests and prairies could relate to observations in their biological processes like development and aging. In this way, we provide a bottoms-up theory to explain the chromatin structural and epigenetic changes in different processes.


Assuntos
Sequência de Bases/fisiologia , Fenômenos Fisiológicos Celulares/genética , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/química , Conformação Molecular , Conformação de Ácido Nucleico , Animais , Sítios de Ligação/genética , Fracionamento Químico , Cromatina/metabolismo , Ilhas de CpG , Epigênese Genética/fisiologia , Regulação da Expressão Gênica , Genes Essenciais/genética , Genoma Humano , Humanos , Camundongos , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
J Am Chem Soc ; 141(6): 2462-2473, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30653310

RESUMO

Using an engineered pyrrolysyl-tRNA synthetase mutant together with tRNACUAPyl, we have genetically encoded Nε-(7-azidoheptanoyl)-l-lysine (AzHeK) by amber codon in Escherichia coli for recombinant expression of a number of AzHeK-containing histone H3 proteins. We assembled in vitro acyl-nucleosomes from these recombinant acyl-H3 histones. All these acyl-nucleosomes contained an azide functionality that allowed quick click labeling with a strained alkyne dye for in-gel fluorescence analysis. Using these acyl-nucleosomes as substrates and click labeling as a detection method, we systematically investigated chromatin deacylation activities of SIRT7, a class III NAD+-dependent histone deacylase with roles in aging and cancer biology. Besides confirming the previously reported histone H3K18 deacylation activity, our results revealed that SIRT7 has an astonishingly high activity to catalyze deacylation of H3K36 and is also catalytically active to deacylate H3K37. We further demonstrated that this H3K36 deacylation activity is nucleosome dependent and can be significantly enhanced when appending the acyl-nucleosome substrate with a short double-stranded DNA that mimics the bridging DNA between nucleosomes in native chromatin. By overexpressing SIRT7 in human cells, we verified that SIRT7 natively removes acetylation from histone H3K36. Moreover, SIRT7-deficient cells exhibited H3K36 hyperacetylation in whole cell extracts, at rDNA sequences in nucleoli, and at select SIRT7 target loci, demonstrating the physiologic importance of SIRT7 in determining endogenous H3K36 acetylation levels. H3K36 acetylation has been detected at active gene promoters, but little is understood about its regulation and functions. Our findings establish H3K36 as a physiologic substrate of SIRT7 and implicate this modification in potential SIRT7 pathways in heterochromatin silencing and genomic stability.


Assuntos
Cromatina/metabolismo , Sirtuínas/metabolismo , Acilação , Biocatálise , Domínio Catalítico , Química Click , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Sirtuínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA