RESUMO
The near-infrared fluorescence imaging has been integrated into the operating room to guide tumor resection, potentially reducing the positive margin rates in breast-conserving surgery (BCS). Relative to the widely used first near-infrared fluorescence imaging, imaging in the second near-infrared (NIR-II) region possesses higher contrast and deeper tissue penetration, particularly in the NIR-IIb window, offering many new opportunities for imaging-guided BCS. Here, we fabricated the c(RGDfC) functionalized erbium-based rare-earth nanoparticles (ErNPs@cRGD) with superior optical property in NIR-IIb region. Owing to deeper tissue penetration and efficient tumor targeting, ErNPs@cRGD-based NIR-IIb fluorescence imaging achieved enhanced signal-to-background ratios in tumor visualization, which was able to guide more complete tumor resection, identify multiple microtumors and distinguish malignant lesions from normal tissues in various mice models. Based on these, this NIR-IIb imaging strategy for surgical navigation can significantly reduce positive margin rates and improve prognosis, laying a foundation for the clinical resection of breast cancer.
Assuntos
Neoplasias da Mama , Nanopartículas , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Fluorescência , Humanos , Camundongos , Nanopartículas/química , Imagem Óptica/métodos , Cirurgia Assistida por Computador/métodosRESUMO
Covalent organic frameworks (COFs) are a type of crystalline porous polymers. It firstly prepared by thermodynamically controlled reversible polymerization to obtain chain units and connecting small organic molecular building units with a certain symmetry. These polymers are widely used in gas adsorption, catalysis, sensing, drug delivery, and many other fields. Solid-phase extraction (SPE) is a fast and simple sample pretreatment technology that can enrich analytes and improve the accuracy and sensitivity of analysis and detection; it is extensively employed in food safety detection, environmental pollutant analysis, and several other fields. How to improve the sensitivity, selectivity, and detection limit of the method during sample pretreatment have become a topic of great interest. COFs have recently been applied to sample pretreatment owing to their low skeleton density, large specific surface area, high porosity, good stability, facile design and modification, simple synthesis, and high selectivity. At present, COFs have also attracted extensive attention as new extraction materials in the field of SPE. These materials have been applied to the extraction and enrichment of diverse types of pollutants in food, environmental, and biological samples, such as heavy metal ions, polycyclic aromatic hydrocarbons, phenol, chlorophenol, chlorobenzene, polybrominated diphenyl ethers, estrogen, drug residues, pesticide residues, etc. COFs can be synthesized from different materials and exert different effects on different extracts. New types of COFs can also be synthesized via modification to achieve better extraction effects. In this work, the main types and synthesis methods of COFs are introduced, and the most important applications of COFs in the fields of food, environment and biology in recent years are highlighted. The development prospects of COFs in the field of SPE are also discussed.
RESUMO
Estrogen receptor α (ERα) serves as an essential therapeutic predictor for breast cancer (BC) patients and is regulated by epigenetic modification. Abnormal methylation of cytosine phosphoric acid guanine islands in the estrogen receptor 1 (ESR1) gene promoter could silence or decrease ERα expression. In ERα-negative BC, we previously found snail family transcriptional repressor 2 (SNAI2), a zinc-finger transcriptional factor, recruited lysine-specific demethylase 1 to the promoter to transcriptionally suppress ERα expression by demethylating histone H3 lysine 4 dimethylation (H3K4me2). However, the role of SNAI2 in ERα-positive BC remains elusive. In this study, we observed a positive correlation between SNAI2 and ESR1 methylation, and SNAI2 promoted ESR1 methylation by recruiting DNA methyltransferase 3 beta (DNMT3B) rather than DNA methyltransferase 1 (DNMT1) in ERα-positive BC cells. Subsequent enrichment analysis illustrated that ESR1 methylation is strongly correlated with cell adhesion and junction. Knocking down DNMT3B could partially reverse SNAI2 overexpression-induced cell proliferation, migration, and invasion. Moreover, high DNMT3B expression predicted poor relapse-free survival and overall survival in ERα-positive BC patients. In conclusion, this study demonstrated the novel mechanisms of the ESR1 methylation mediated with the SNAI2/DNMT3B complex and enhanced awareness of ESR1 methylation's role in promoting epithelial-mesenchymal transition in BC.
RESUMO
Positive resection margin frequently exists in breast-conserving treatment (BCT) of early-stage breast cancer, and insufficient therapeutic efficacy is common during radiotherapy (RT) in advanced breast cancer patients. Moreover, a multimodal nanotherapy platform is urgently required for precision cancer medicine. Therefore, a biodegradable cyclic RGD pentapeptide/hollow virus-like gadolinium (Gd)-based indocyanine green (R&HV-Gd@ICG) nanoprobe is developed to improve fluorescence image-guided surgery and breast cancer RT efficacy. R&HV-Gd exhibits remarkably improved aqueous stability, tumor retention, and target specificity of ICG, and achieves outstanding magnetic resonance/second near-infrared (NIR-II) window multimodal imaging in vivo. The nanoprobe-based NIR-II fluorescence image guidance facilitates complete tumor resection, improves the overall mouse survival rate, and effectively discriminates between benign and malignant breast tissues in spontaneous breast cancer transgenic mice (area under the curve = 0.978; 95% confidence interval: 0.952, 1.0). Moreover, introducing the nanoprobe to tumors generated more reactive oxygen species under X-ray irradiation, improved RT sensitivity, and reduced mouse tumor progression. Notably, the nanoprobe is biodegradable in vivo and exhibits accelerated bodily clearance, which is expected to reduce the potential long-term inorganic nanoparticle toxicity. Overall, the nanoprobe provides a basis for developing precision breast cancer treatment strategies.
Assuntos
Neoplasias da Mama , Nanopartículas , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Feminino , Gadolínio , Humanos , Verde de Indocianina , Margens de Excisão , Camundongos , Cirurgia Assistida por Computador/métodosRESUMO
The CDK4/6-Rb axis is a crucial target of cancer therapy and several selective inhibitors of it have been approved for clinical application. However, current therapeutic efficacy evaluation mostly relies on anatomical imaging, which cannot directly reflect changes in drug targets, leading to a delay in the selection of optimal treatment. In this study, we constructed a novel fluorescent probe, CPP30-Lipo/CDKACT4, for real-time monitoring of CDK4 activity and the therapeutic efficacy of its inhibitor in HR+/HER2- breast cancer. CPP30-Lipo/CDKACT4 exhibited good optical stability and targetability. The signal of the probe in living cells decreased after CDK4 knockdown or palbociclib treatment. Moreover, the fluorescence intensity of the tumors after 7 days of palbociclib treatment was significantly lower than that before treatment, while no significant change in tumor diameter was observed under magnetic resonance imaging. Overall, we developed an innovative fluorescent probe that can monitor CDK4 activity and the early therapeutic response to CDK4 inhibitors in living cells and in vivo. It may provide a new strategy for evaluating antitumor therapeutic efficacy in a clinical context and for drug development.
RESUMO
Purpose: Tumor-free surgical margin is crucial but challenging in breast-conserving surgery (BCS). Fluorescence imaging is a promising strategy for surgical navigation that can reliably assist the surgeon with visualization Of the tumor in real-time. Notably, finding an optimized fluorescent probe has been a challenging research topic. Herein, we developed a novel near-infrared (NIR) fluorescent probe based on tailored Hepatitis B Core virus-like protein (HBc VLP) and presented the preclinical imaging-guided surgery. Methods: The RGD-HBc160 VLP was synthesized by genetic engineering followed encapsulation of ICG via disassembly-reassembly. The applicability of the probe was tested for cell and tissue binding capacities through cell-based plate assays, xenograft mice model, and MMTV-PyVT mammary tumor transgenic mice. Subsequently, the efficacy of RGD-HBc160/ICG-guided surgery was evaluated in an infiltrative tumor-bearing mouse model. The protein-induced body's immune response was further assessed. Results: The prepared RGD-HBc160/ICG showed outstanding integrin αvß3 targeting ability in vitro and in vivo. After intravenous administration of probe, the fluorescence guidance facilitated more complete tumor resection and improved overall survival Of the infiltrative tumor-bearing mice. The probe also showed the excellent capability to differentiate between benign and malignant breast tissues in the mammary tumor transgenic mice. Interestingly, the ingenious tailoring of HBc VLP could not only endow its tumor-targeting ability towards integrin αvß3 but also significantly reduce the humoral and cellular immune response. Conclusion: The RGD-HBc160/ICG holds promise as an effective tool to delineate tumor margin. These results have translational potential to achieve margin-negative resection and improve the stratification of patients for a potentially curative.
Assuntos
Neoplasias da Mama , Antígenos do Núcleo do Vírus da Hepatite B , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Fluorescência , Humanos , Integrina alfaVbeta3/metabolismo , CamundongosRESUMO
Near-infrared (NIR) fluorescence imaging is an emerging noninvasive imaging modality, with unique advantages in guiding tumor resection surgery, thanks to its high sensitivity and instantaneity. In the past decade, studies on the conventional NIR window (NIR-I, 750-900 nm) have gradually focused on the second NIR window (NIR-II, 1000-1700 nm). With its reduced light scattering, photon absorption, and auto-fluorescence qualities, NIR-II fluorescence imaging significantly improves penetration depths and signal-to-noise ratios in bio-imaging. Recently, several studies have applied NIR-II imaging to navigating cancer surgery, including localizing cancers, assessing surgical margins, tracing lymph nodes, and mapping important anatomical structures. These studies have exemplified the significant prospects of this new approach. In this review, several NIR-II fluorescence agents and some of the complex applications for guiding cancer surgeries are summarized. Future prospects and the challenges of clinical translation are also discussed.