Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 232
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(10): 4031-4038, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411081

RESUMO

A multisignal method for the sensitive detection of norovirus based on Mn paramagnetic relaxation and nanocatalysis was developed. This dual-modality sensing platform was based on the strong relaxation generated by cracked Au@MnO2 nanoparticles (NPs) and their intrinsic enzyme-like activity. Ascorbic acid rapidly cracked the MnO2 layer of Au@MnO2 NPs to release Mn(II), resulting in the relaxation modality being in a "switch-on" state. Under the optimal conditions, the relaxation modality exhibited a wide working range (6.02 × 103-3.01 × 107 copies/µL) and a limit of detection (LOD) of 2.29 × 103 copies/µL. Using 4,4',4″,4″'-(porphine-5,10,15,20-tetrayl) tetrakis (benzenesulfonic acid) (tpps)-ß-cyclodextrin (tpps-ß-CD) as a T1 relaxation signal amplification reagent, a lower LOD was obtained. The colorimetric modality exploited the "peroxidase/oxidase-like" activity of Au@MnO2 NPs, which catalyzed the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB, which exhibited a working range (6.02 × 104-6.02 × 106 copies/µL) and an LOD of 2.6 × 104 copies/µL. In addition, the rapid amplification reaction of recombinase polymerase enabled the detection of low norovirus levels in food samples and obtained a working range of 101-106 copies/mL and LOD of 101 copies/mL (relaxation modality). The accuracy of the sensor in the analysis of spiked samples was consistent with that of the real-time quantitative reverse transcription polymerase chain reaction, demonstrating the high accuracy and practical utility of the sensor.


Assuntos
Técnicas Biossensoriais , Norovirus , Óxidos , Compostos de Manganês , Oxirredutases , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Limite de Detecção
2.
Crit Rev Biotechnol ; : 1-25, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797660

RESUMO

As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.

3.
Phys Chem Chem Phys ; 26(15): 11618-11630, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546226

RESUMO

In this work, CuM/CeO2 (M = Mn, Fe, Co, Ni, and Zr) catalysts with a low Cu content of 1 wt% were purposely designed and prepared using the co-impregnation method. The samples were characterized using various techniques (TG-DTA, XRD, N2-adsorption/desorption measurements, H2-TPR, XPS and Raman spectroscopy) and CO preferential oxidation (CO-Prox) under H2/CO2-rich conditions was performed. The results have shown that enhanced catalytic performance was achieved upon the introduction of Mn, Co and Ni, and little impact was observed with Zr doping, but Fe showed a negative effect, as compared with the Cu/CeO2 catalyst. Characterization data revealed that the M doping strongly changed the surface composition, revealing the decreased Cu/Ce ratios on the surface, which could be accounted for by the formation of more M/Cu-O-Ce solid solution, or strong Cu-M interactions. When Mn was used, the obtained CuMn/CeO2 catalyst revealed the highest concentration of the oxygen vacancies and Ce3+ ions, which could be correlated well with its superior catalytic performance. Compared with the Cu/CeO2 catalyst, the CO conversion rate increased by 24.7% at a low temperature of 90 °C over the CuMn/CeO2 catalyst. At 130 °C, the maximum CO conversion was 94.7% and the CO2 selectivity was 78.9%. Conversely, the Fe doped Cu/CeO2 catalyst demonstrated the poorest catalytic activity, which was due to the blockage effect of Fe species on Cu showing a high Fe/Cu ratio of 1.9 on the surface.

4.
Cereb Cortex ; 33(9): 5671-5689, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36437790

RESUMO

Linguistic communication is often regarded as an action that serves a function to convey the speaker's goal to the addressee. Here, with an functional magnetic resonance imaging (fMRI) study and a lesion study, we demonstrated that communicative functions are represented in the human premotor cortex. Participants read scripts involving 2 interlocutors. Each script contained a critical sentence said by the speaker with a communicative function of either making a Promise, a Request, or a Reply to the addressee's query. With various preceding contexts, the critical sentences were supposed to induce neural activities associated with communicative functions rather than specific actions literally described by these sentences. The fMRI results showed that the premotor cortex contained more information, as revealed by multivariate analyses, on communicative functions and relevant interlocutors' attitudes than the perisylvian language regions. The lesion study results showed that, relative to healthy controls, the understanding of communicative functions was impaired in patients with lesions in the premotor cortex, whereas no reliable difference was observed between the healthy controls and patients with lesions in other brain regions. These findings convergently suggest the crucial role of the premotor cortex in representing the functions of linguistic communications, supporting that linguistic communication can be seen as an action.


Assuntos
Córtex Motor , Humanos , Idioma , Linguística , Comunicação , Encéfalo , Imageamento por Ressonância Magnética
5.
Mikrochim Acta ; 191(5): 283, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652169

RESUMO

A new method is proposed for detecting typical melamine dopants in food using surface-enhanced Raman scattering (SERS) biosensing technology. Melamine specific aptamer was used as the identification probe, and gold magnets (AuNPs@MNPs) and small gold nanoparticles (AuNPs@MBA) were used as the basis for Raman detection. The Raman signal of the detection system can directly detect melamine quantitatively. Under optimized conditions, the detection of melamine was carried out in the low concentration range of 0.001-500 mg/kg, the enhancement factor (EF) was 2.3 × 107, and the detection limit was 0.001 mg/kg. The method is sensitive and rapid, and can be used for the rapid detection of melamine in the field environment.


Assuntos
Aptâmeros de Nucleotídeos , Ouro , Limite de Detecção , Nanopartículas Metálicas , Análise Espectral Raman , Triazinas , Triazinas/análise , Triazinas/química , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Técnicas Biossensoriais/métodos , DNA/química
6.
Compr Rev Food Sci Food Saf ; 23(1): 1-22, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284608

RESUMO

Food is consumed by humans, which is indispensable to human life. Therefore, considerable attention of the whole society has been paid to food safety. Over the last few years, dramatic social development has brought new challenges to food safety, making developing new and quick methods for on-site food safety testing an important necessity. As a result, DNA-fueled molecular machines, characterized by high efficiency, accuracy, and sensitivity in testing, have come into the spotlight, based on which sensors can be constructed to detect toxic and harmful substances in food products. This study reviewed recent research on several DNA-fueled molecular machines, including DNA tweezers, DNA walkers, and DNA origami, for rapidly detecting toxic and harmful substances. Based on the above studies, the sensitivity and timeliness of several DNA molecular machines were summarized and compared, and the development prospect of DNA fuel molecular machines in the field of food safety detection was prospected.


Assuntos
DNA , Nanotecnologia , Humanos , Nanotecnologia/métodos , Inocuidade dos Alimentos
7.
Analyst ; 148(3): 690-699, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36632708

RESUMO

DNA molecular machines are widely used in the fields of biosensors and biological detection. Among them, DNA walkers have attracted much attention due to their simple design and controllability. Herein, we attempt to develop a DNA walker triggered exponential amplification method and explore its application. The AuNP probes in the DNA walker are constructed by a freezing technology, instead of the time-consuming and complex synthesis process of the traditional method. Meanwhile, after the "recognition-cleavage-relative motion" cycle of this DNA walker reaction, the exponential amplification reaction is initiated, and leads to the fluorescence recovery of the molecular beacon. Taking ricin as a target, this new method shows a limit of detection of 2.25 pM by selecting aptamers with strong binding affinity, and exhibits a wide detection range, satisfactory specificity, and excellent stability in practical application. Therefore, our method provides a universal sensing platform and has great prospects in the fields of biosensors, food safety detection, and clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Ricina , Congelamento , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Sondas de DNA/química
8.
Phys Chem Chem Phys ; 25(47): 32557-32568, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37999632

RESUMO

The adsorption of O2 on Cu/CeO2(111) and the CO oxidation reactivity of the formed oxygen species were studied using the DFT method. The results showed that superoxide species (O2δ-), which directly interacted with Cu, formed when O2 adsorbed on the surface oxygen vacancies, while O2 adsorbed on the subsurface oxygen vacancies gave rise to ozone-like O3δ- species by combining with the nearest surface lattice oxygen (O1). PDOS showed that hybridization of the 2p orbitals between O2 and O1 formed a delocalized π bond, confirming the formation of O3δ-. For O2δ-, electrons on Cu and O1 transferred to O2 while the charge of Ce remained unchanged. However, for O3δ-, the transferred electrons were mainly from O1, and partially from O2, Ce1 and Ce2. It was very interesting that Cu also received a few electrons in the latter case. Compared with CO directly adsorbed on lattice oxygen, the two oxygen species were active for CO oxidation, forming CO2 or carbonates, and higher absolute adsorption energy was obtained with the interaction between CO and O3δ-. The findings of this study provide new insight on the CO oxidation reaction mechanism, facilitating an in-depth understanding of Cu-doped CeO2 catalysts.

9.
J Nanobiotechnology ; 21(1): 389, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880670

RESUMO

It has recently been discovered that, like other members of the Cas family (12a and 13a), the clustered regularly interspaced short palindrome repeat CRISPR-Cas14a system not only mediates high-sensitivity detection with exceptionally strong gene editing ability but is also generally useful for DNA detection via fluorescence. Photoelectrochemical (PEC) sensors have been widely applied as efficient analytical tools. Measuring electrical signals is more cost-effective and the necessary equipment is more easily portable than fluorescence signal detectors, but their stability still needs to be improved. The high base resolution of CRISPR-Cas14a can compensate for such shortcomings. Therefore, electrical signals and fluorescence signals were combined, and the development of a universal CRISPR-Cas14a-responsive ultrasensitive upconversion PEC sensor is described in this paper. Moreover, strand displacement amplification (SDA) and a near-infrared (NIR) light source were utilized to further improve the stability and sensitivity of the photoelectric signals. At the same time, the modified working electrode (UCNPs-ssDNA-CdS@Au/ITO) on the three-electrode disposable sensor was used as the reporter probe, which cooperates with the trans-cleavage activity of Cas14a endonuclease. To verify the universality of this sensor, the UCNPs-Cas14a-based PEC sensor was applied for the detection of the small-molecule toxin T2 and protein kinase PTK7. Here, we report that the limit of detection of this reagent was within the fg range, successfully applied to the detection of T2 in oats and PTK7 in human serum. We propose that by combining PEC and CRISPR-14a, UCNPs-Cas14a-based PEC sensors could become powerful drivers for the extensive development of ultrasensitive, accurate and cost-effective universal sensors for detection and diagnosis.


Assuntos
Técnicas Biossensoriais , Humanos , Edição de Genes , DNA/química , DNA de Cadeia Simples , Moléculas de Adesão Celular , Receptores Proteína Tirosina Quinases
10.
Mikrochim Acta ; 191(1): 57, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153525

RESUMO

A Fe/Zr bimetal-organic framework (ZrFe-MOF) is utilized to establish a ratiometric fluorescent aptasensor for the determination of tetrodotoxin (TTX). The multifunctional ZrFe-MOF possesses inherent fluorescence at 445 nm wavelength, peroxidase-mimetic activity, and specific recognition and adsorption capabilities for aptamers, owing to its organic ligand, and Fe and Zr nodes. The peroxidation of o-phenylenediamine (OPD) substrate generates fluorescent 2,3-diaminophenazine (OPDox) at 555 nm wavelength, thus quenching the inherent fluorescence of ZrFe-MOF because of the fluorescence resonance energy transfer (FRET) effect. TTX aptamers, which are absorbed on the material surface without immobilization or fluorescent labeling, inhibit the peroxidase-mimetic activity of ZrFe-MOF. It causes the decreased OPDox fluorescence at 555 nm wavelength and the inverse restoration of ZrFe-MOF fluorescence at 445 nm wavelength. With TTX, the aptamers specifically bind to TTX, triggering rigid complex release from ZrFe-MOF surface and reactivating its peroxidase-mimetic activity. Consequently, the two fluorescence signals exhibit opposite changes. Employing this ratiometric strategy, the determination of TTX is achieved with a detection limit of 0.027 ng/mL and a linear range of 0.05-500 ng/mL. This aptasensor also successfully determines TTX concentrations in puffer fish and clam samples, demonstrating its promising application for monitoring trace TTX in food safety.


Assuntos
Peroxidase , Peroxidases , Animais , Tetrodotoxina , Corantes , Adsorção , Oligonucleotídeos
11.
Anal Chem ; 94(35): 12016-12023, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35997203

RESUMO

In this study, we designed a magnetic relaxation switch (MRS) sensor combined with magnetophoresis technology (MS-MRS), which helps solve the problems of traditional MRS sensors. The sensor is based on a new combined magnet and is composed of small magnetic blocks and iron sheets that can rapidly separate magnetic nanoparticles of different sizes within 5 min. The MS-MRS sensor consists of aptamer-functionalized magnetic nanoparticles (diameter: 200 nm) (MNP200-Apt), complementary DNA-functionalized magnetic nanoparticles (diameter: 20 nm) (MNP20-cDNA), and a combined magnet ("M2" magnet). The MNP200-Apt probe could be separated by an "M2" magnet but the MNP20-cDNA probe could not. To further improve the sensitivity of the sensor, we successfully constructed an MS-MRS-Hg sensor based on the "T-Hg(II)-T" specific recognition that aggregated MNP20-cDNA probes to amplify the relaxation signal. The detection working range of the MS-MRS sensor is 0.5-100 ng/mL and that of the MS-MRS-Hg sensor is 0.05-100 ng/mL. Their limit of detection (LOD) values are 0.15 and 0.01 ng/mL, respectively. The relative recoveries of the MS-MRS and MS-MRS-Hg sensors are 95.2-119.5% and 93.1-113.1%, respectively. These results indicate that the proposed sensors have a high accuracy level.


Assuntos
Mercúrio , Oligonucleotídeos/química , DNA Complementar , Limite de Detecção , Fenômenos Magnéticos
12.
Anal Chem ; 94(34): 11889-11897, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35973129

RESUMO

The DNA origami-mediated self-assembly strategy has emerged as a powerful tool in surface-enhanced Raman spectroscopy (SERS). However, these self-assembly approaches typically do not possess high detection specificity. Herein, a novel strategy based on adenosine triphosphate (ATP)-responsive strand displacement (ARSD) coupling with DNA origami/AuNPs for SERS analysis of microcystin-LR (MC-LR) is presented. In the presence of MC-LR and ATP molecules, nucleic acid sensing structures fabricated with anti-MC-LR aptamer (T1) and ATP aptamer (T2) were triggered to release the remaining ATP. In addition, DNA origami-assisted assembly results in the formation of homogeneous plasmonic nanostructures for Raman enhancement via strong plasmonic coupling. After the binding in the gaps of functionalized DNA origami/AuNPs, the Raman shift of the ATP molecules becomes detectable, leading to increased SERS intensity in 734 cm-1. A linear response to MC-LR was obtained in the concentration range of 1.56-50 µg·L-1, and the limit of detection (LOD) was 0.29 µg·L-1. Combined with the solid-phase extraction sample pretreatment for extraction and 10-fold concentration, this proposed method was successfully used to detect MC-LR type in real lake-water samples with good recoveries of 98.4-116% and relative standard deviations of 1.9-6.7%. Furthermore, for the detection of MC-LR in contaminated lake-water samples, the results of the developed method and ultrahigh-performance liquid chromatography-tandem mass spectrometry were found to be in agreement with relative errors between -12 and 2.4%. The proposed strategy provides a sensitive recognition and signal amplification platform for trace MC-LR analysis as well as innovative nucleic acid sensing structures for toxin analysis more generally.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Trifosfato de Adenosina , Técnicas Biossensoriais/métodos , DNA , Ouro/química , Limite de Detecção , Toxinas Marinhas , Nanopartículas Metálicas/química , Microcistinas/análise , Análise Espectral Raman , Água/química
13.
BMC Microbiol ; 22(1): 36, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093006

RESUMO

The human gut is a reservoir of antibiotic resistance genes (ARGs). Even in the absence of antibiotics, ARGs are present in large quantities in faeces of adults, children and even newborns. However, where and when ARGs are acquired remains unclear, as does the types of ARGs acquired. Herein, we recruited 82 pairs of women and their caesarean section newborns. Conventional culture methods and quantitative PCR were employed to detect nine species and six ARG types in meconia, faeces from 3-day-old newborns, amniotic fluid, colostrum, and hospital ward air samples. Furthermore, ARG transfer was explored by tracking Staphylococcus epidermidis isolated from faeces of 3-day-old newborns, colostrum and ward air samples using multi-locus sequence typing (MLST). No ARGs or microorganisms were detected in meconia or amniotic fluid. One or more ARGs were detected in 90.2% of faeces from 3-day-old newborns, and the mecA gene exhibited the highest detection rate (45.1%). ARGs were detected in 85.4% of colostra consistent with ARGs in faeces from 3-day-old newborns. Some ARGs were detected in ward air, and might also be a source of ARGs in neonatal faeces. Isolation of S. epidermidis from neonatal faeces was consistent with antibiotic resistance and gene profiles for colostrum samples. Traceability analysis of S. epidermidis showed that ARGs in neonatal faeces mainly originated from colostrum, and partly from ward air. After birth, neonates born by caesarean section obtain a variety of ARGs mainly from colostrum, and partly from ward air.


Assuntos
Microbiologia do Ar , Bactérias/efeitos dos fármacos , Aleitamento Materno/estatística & dados numéricos , Cesárea/estatística & dados numéricos , Resistência Microbiana a Medicamentos/genética , Trato Gastrointestinal/efeitos dos fármacos , Genes Bacterianos/genética , Leite Humano , Adulto , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Hospitais , Humanos , Recém-Nascido , Masculino , Mães/estatística & dados numéricos , Tipagem de Sequências Multilocus , Gravidez
14.
Crit Rev Food Sci Nutr ; 62(17): 4706-4725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33523717

RESUMO

Food safety become a hot issue currently with globalization of food trade and food supply chains. Chemical pollution, microbial contamination and adulteration in food have attracted more attention worldwide. Contamination with antibiotics, estrogens and heavy metals in water environment and soil environment have also turn into an enormous threat to food safety. Traditional small-scale, long-term detection technologies have been unable to meet the current needs. In the monitoring process, rapid, convenient, accurate analysis and detection technologies have become the future development trend. We critically synthesizing the current knowledge of various rapid detection technology, and briefly touched upon the problem which still exist in research process. The review showed that the application of novel materials promotes the development of rapid detection technology, high-throughput and portability would be popular study directions in the future. Of course, the ultimate aim of the research is how to industrialization these technologies and apply to the market.


Assuntos
Inocuidade dos Alimentos , Metais Pesados , Abastecimento de Alimentos , Solo , Tecnologia
15.
J Nanobiotechnology ; 20(1): 40, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35062945

RESUMO

The base sequences of DNA are endowed with the rich structural and functional information and are available for the precise construction of the 2D and 3D macro products. The hydrogels formed by DNA are biocompatible, stable, tunable and biologically versatile, thus, these have a wide range of promising applications in bioanalysis and biomedicine. In particular, the stimuli-responsive DNA hydrogels (smart DNA hydrogels), which exhibit a reversible and switchable hydrogel to sol transition under different triggers, have emerged as smart materials for sensing. Thus far, the combination of the stimuli-responsive DNA hydrogels and multiple sensing platforms is considered as biocompatible and is useful as the flexible recognition components. A review of the stimuli-responsive DNA hydrogels and their biosensing applications has been presented in this study. The synthesis methods to prepare the DNA hydrogels have been introduced. Subsequently, the current status of the stimuli-responsive DNA hydrogels in biosensing has been described. The analytical mechanisms are further elaborated by the combination of the stimuli-responsive DNA hydrogels with the optical, electrochemical, point-of-care testing (POCT) and other detection platforms. In addition, the prospects of the application of the stimuli-responsive DNA hydrogels in biosensing are presented.


Assuntos
Técnicas Biossensoriais , DNA/química , Hidrogéis/química
16.
Trends Food Sci Technol ; 122: 211-222, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35250172

RESUMO

BACKGROUND: In the context of the current pandemic caused by the novel coronavirus, molecular detection is not limited to the clinical laboratory, but also faces the challenge of the complex and variable real-time detection fields. A series of novel coronavirus events were detected in the process of food cold chain packaging and transportation, making the application of molecular diagnosis in food processing, packaging, transportation, and other links urgent. There is an urgent need for a rapid detection technology that can adapt to the diversity and complexity of food safety. SCOPE AND APPROACH: This review introduces a new molecular diagnostic technology-biosensor analysis technology based on CRISPR-Cas12a. Systematic clarification of its development process and detection principles. It summarizes and systematically organizes its applications in viruses, food-borne pathogenic bacteria, small molecule detection, etc. In the past four years, which provides a brand-new and comprehensive solution for food detection. Finally, this article puts forward the challenges and the prospects for food safety. KEY FINDINGS AND CONCLUSIONS: The novel coronavirus hazards infiltrated every step of the food industry, from processing to packaging to transportation. The biosensor analytical technology based on CRISPR-Cas12a has great potential in the qualitative and quantitative analysis of infectious pathogens. CRISPR-Cas12a can effectively identify the presence of the specific nucleic acid targets and the small changes in sequences, which is particularly important for nucleic acid identification and pathogen detection. In addition, the CRISPR-Cas12a method can be adjusted and reconfigured within days to detect other viruses, providing equipment for nucleic acid diagnostics in the field of food safety. The future work will focus on the development of portable microfluidic devices for multiple detection. Shao et al. employed physical separation methods to separate Cas proteins in different microfluidic channels to achieve multiple detection, and each channel simultaneously detected different targets by adding crRNA with different spacer sequences. Although CRISPR-Cas12a technology has outstanding advantages in detection, there are several technical barriers in the transformation from emerging technologies to practical applications. The newly developed CRISPR-Cas12a-based applications and methods promote the development of numerous diagnostic and detection solutions, and have great potential in medical diagnosis, environmental monitoring, and especially food detection.

17.
Mikrochim Acta ; 189(10): 394, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36155855

RESUMO

Antibiotics have brought many benefits to public health systems worldwide since their first use in the last century, yet with their overuse in clinical treatment and livestock farming, new public health issues have arisen. Previously, we found in our experiments that the levels of macB genes in bovine raw milk ranked among the top of many drug resistance genes. In this paper, we present an analysis of regularly interspaced clustered short palindromic repeats (CRISPR) combined with surface-enhanced Raman scattering (SERS) technology for the detection of the drug resistance gene macB. The analysis was accomplished through the collaboration of the CRISPR system's ability to specifically identify genes and the more sensitive performance of the SERS. The analysis detects the drug resistance gene macB and does not yet require complex steps such as nucleic acid amplification. This method may prove to be an effective method for accurate detection of the drug-resistant gene macB, thus enabling more effective prevention of contamination of drug-resistant genes in food hygiene.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ácidos Nucleicos , Animais , Antibacterianos , Sistemas CRISPR-Cas , Bovinos , Resistência a Medicamentos , Análise Espectral Raman
18.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408487

RESUMO

The efficient capture of multi-pollutant residues in food is vital for food safety monitoring. In this study, in-situ-fabricated magnetic MIL-53(Al) metal organic frameworks (MOFs), with good magnetic responsiveness, were synthesized and applied for the magnetic solid-phase extraction (MSPE) of chloramphenicol, bisphenol A, estradiol, and diethylstilbestrol. Terephthalic acid (H2BDC) organic ligands were pre-coupled on the surface of amino-Fe3O4 composites (H2BDC@Fe3O4). Fe3O4@MIL-53(Al) MOF was fabricated by in-situ hydrothermal polymerization of H2BDC, Al (NO3)3, and H2BDC@Fe3O4. This approach highly increased the stability of the material. The magnetic Fe3O4@MIL-53(Al) MOF-based MSPE was combined with high-performance liquid chromatography-photo diode array detection, to establish a novel sensitive method for analyzing multi-pollutant residues in milk. This method showed good linear correlations, in the range of 0.05-5.00 µg/mL, with good reproducibility. The limit of detection was 0.004-0.108 µg/mL. The presented method was verified using a milk sample, spiked with four pollutants, which enabled high-throughput detection and the accuracies of 88.17-107.58% confirmed its applicability, in real sample analysis.


Assuntos
Poluentes Ambientais , Estruturas Metalorgânicas , Animais , Cromatografia Líquida de Alta Pressão/métodos , Poluentes Ambientais/análise , Limite de Detecção , Fenômenos Magnéticos , Estruturas Metalorgânicas/química , Leite/química , Reprodutibilidade dos Testes , Extração em Fase Sólida/métodos
19.
Anal Chem ; 93(10): 4488-4496, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33651609

RESUMO

17ß-Estradiol (E2) can cause an adverse effect on the human endocrine system even at the nanomolar level. Measurements of very low levels of E2 remain a critical challenge due to insufficient sensitivity. In this study, a multistep isothermal amplification fluorescence strategy was constructed, which could realize the exponential amplification of target E2. Specifically, strand displacement reaction (SDA), rolling circle amplification (RCA), and multiprimed rolling circle amplification (MRCA) were combined in a series to quantify trace complementary strand of E2 (cDNA). The E2 aptamer and cDNA were hybridized and modified on the magnetic beads. E2 could bind to its aptamer and cause the release of the cDNA. Then, cDNA would combine with the template DNA, initiating the SDA-RCA-MRCA. The molecular beacons, possessing low background signal, whose fluorescence was quenched in the state of chain folding, could be specifically recognized by the long single-stranded DNA (L-ssDNA) generated by the multistep isothermal amplification triggered by cDNA, and then the fluorescence of the molecular beacons could be restored. Therefore, the E2 could be quantitatively detected by the recovery fluorescence intensity. The fluorescence value showed a good linear relationship with the concentration of E2 in the range of 0.001836-183.6 nM, and the limit of detection (LOD) was as low as 63.09 fM. In addition, the recovery rates of this method spiked in milk and water were 80.8-107.0%, respectively. This method has the advantage of multistep isothermal amplification to obtain abundant fluorescence signals, which may provide a new possibility for highly sensitive detection of other small-molecule targets.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estradiol , Humanos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico
20.
Anal Chem ; 93(50): 16922-16931, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34879197

RESUMO

In recent years, the combination of DNA nanotechnology and biosensing has been extensively reported. Herein, we attempted to develop a dual sensitization smartphone colorimetric strategy based on rolling circle amplification (RCA) coils gathering Au tetrahedra and explore its application. The dual sensitization effect of this strategy was achieved by rolling circle amplification (RCA) and Au tetrahedra. Under the initiation of the complementary DNA, a large number of ssDNA were generated, achieving amplification of the reaction signal. At the same time, due to the formation of Au tetrahedra, more gold nanoparticles could be gathered under the same conditions, and the signal would be amplified again. Using software ImageJ, the gray value of the reaction solution can be analyzed, detecting the target timely under the practical conditions of lack of equipment. By selecting aptamers with strong binding affinity, we applied this strategy to detect creatine kinase isoenzymes (CK-MB), showing a limit of detection of 0.8 pM, which performed well in actual detection and can meet the needs for real-time detection of CK-MB. Therefore, a universal detection platform was developed, which has broad application prospects in biosensing, clinical diagnosis, food detection, and other fields.


Assuntos
Colorimetria , Nanopartículas Metálicas , Ouro , Nanotecnologia , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA