Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brain Inj ; 34(1): 62-67, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31644325

RESUMO

Objective: To use the electronic medical record (EMR) to optimize patient care, facilitate documentation, and support quality improvement and practice-based research in a concussion (mild traumatic brain injury; mTBI) clinic.Methods: We built a customized structured clinical documentation support (SCDS) toolkit for patients in a concussion specialty clinic. The toolkit collected hundreds of fields of discrete, standardized data. Autoscored and interpreted score tests include the Generalized Anxiety Disorder 7-item scale, Center for Epidemiology Studies Depression scale, Insomnia Severity Index, and Glasgow Coma Scale. Additionally, quantitative score measures are related to immediate memory, concentration, and delayed recall. All of this data collection occurred in a standard appointment length.Results: To date, we evaluated 619 patients at an initial office visit after an mTBI. We provided a description of our toolkit development process, and a summary of the data electronically captured using the toolkit.Conclusions: The electronic medical record can be used to effectively structure and standardize care in a concussion clinic. The toolkit supports the delivery of care consistent with Best Practices, provides opportunities for point of care decision support, and writes comprehensive progress notes that can be communicated to other providers.


Assuntos
Concussão Encefálica , Registros Eletrônicos de Saúde , Concussão Encefálica/diagnóstico , Concussão Encefálica/terapia , Documentação , Humanos , Assistência ao Paciente , Melhoria de Qualidade
2.
Front Neurol ; 12: 662278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935957

RESUMO

Genetic risk factors for Parkinson's disease (PD) risk and progression have been identified from genome-wide association studies (GWAS), as well as studies of familial forms of PD, implicating common variants at more than 90 loci and pathogenic or likely pathogenic variants at 16 loci. With the goal of understanding whether genetic variants at these PD-risk loci/genes differentially contribute to individual clinical phenotypic characteristics of PD, we used structured clinical documentation tools within the electronic medical record in an effort to provide a standardized and detailed clinical phenotypic characterization at the point of care in a cohort of 856 PD patients. We analyzed common SNPs identified in previous GWAS studies, as well as low-frequency and rare variants at parkinsonism-associated genes in the MDSgene database for their association with individual clinical characteristics and test scores at baseline assessment in our community-based PD patient cohort: age at onset, disease duration, Unified Parkinson's Disease Rating Scale I-VI, cognitive status, initial and baseline motor and non-motor symptoms, complications of levodopa therapy, comorbidities and family history of neurological disease with one or more than one affected family members. We find that in most cases an individual common PD-risk SNP identified in GWAS is associated with only a single clinical feature or test score, while gene-level tests assessing low-frequency and rare variants reveal genes associated in either a unique or partially overlapping manner with the different clinical features and test scores. Protein-protein interaction network analysis of the identified genes reveals that while some of these genes are members of already identified protein networks others are not. These findings indicate that genetic risk factors for PD differentially affect the phenotypic presentation and that genes associated with PD risk are also differentially associated with individual disease phenotypic characteristics at baseline. These findings raise the intriguing possibility that different SNPs/gene effects impact discrete phenotypic characteristics. Furthermore, they support the hypothesis that different gene and protein-protein interaction networks that underlie PD risk, the PD phenotype, and the neurodegenerative process leading to the disease phenotype, and point to the significance of the genetic background on disease phenotype.

3.
Front Neurol ; 11: 548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733352

RESUMO

Background: Different factors influence severity, progression, and outcomes in Parkinson's disease (PD). Lack of standardized clinical assessment limits comparison of outcomes and availability of well-characterized cohorts for collaborative studies. Methods: Structured clinical documentation support (SCDS) was developed within the DNA Predictions to Improve Neurological Health (DodoNA) project to standardize clinical assessment and identify molecular predictors of disease progression. The Longitudinal Clinical and Genetic Study of Parkinson's Disease (LONG-PD) was launched within the Genetic Epidemiology of Parkinson's disease (GEoPD) consortium using a Research Electronic Data Capture (REDCap) format mirroring the DodoNA SCDS. Demographics, education, exposures, age at onset (AAO), Unified Parkinson's Disease Rating Scale (UPDRS) parts I-VI or Movement Disorders Society (MDS)-UPDRS, Montreal Cognitive Assessment (MoCA)/Short Test of Mental Status (STMS)/Mini Mental State Examination (MMSE), Geriatric Depression Scale (GDS), Epworth Sleepiness Scale (ESS), dopaminergic therapy, family history, nursing home placement, death and blood samples were collected. DodoNA participants (396) with 6 years of follow-up and 346 LONG-PD participants with up to 3 years of follow-up were analyzed using group-based trajectory modeling (GBTM) focused on: AAO, education, family history, MMSE/MoCA/STMS, UPDRS II-II, UPDRS-III tremor and bradykinesia sub-scores, Hoehn and Yahr staging (H&Y) stage, disease subtype, dopaminergic therapy, and presence of autonomic symptoms. The analysis was performed with either cohort as the training/test set. Results: Patients are classified into slowly and rapidly progressing courses by AAO, MMSE score, H &Y stage, UPDRS-III tremor and bradykinesia sub-scores relatively early in the disease course. Late AAO and male sex assigned patients to the rapidly progressing group, whereas tremor to the slower progressing group. Classification is independent of which cohort serves as the training set. Frequencies of disease-causing variants in LRRK2 and GBA were 1.89 and 2.96%, respectively. Conclusions: Standardized clinical assessment provides accurate phenotypic characterization in pragmatic clinical settings. Trajectory analysis identified two different trajectories of disease progression and determinants of classification. Accurate phenotypic characterization is essential in interpreting genomic information that is generated within consortia, such as the GEoPD, formed to understand the genetic epidemiology of PD. Furthermore, the LONGPD study protocol has served as the prototype for collecting standardized phenotypic information at GEoPD sites. With genomic analysis, this will elucidate disease etiology and lead to targeted therapies that can improve disease outcomes.

4.
Front Neurol ; 10: 161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899241

RESUMO

The electronic medical record (EMR) presents an opportunity to standardize patient data collection based on quality guidelines and conduct practice-based research. We describe the development of a customized EMR "toolkit" that standardizes patient data collection with hundreds of discrete fields that supports Best Practices for treating patients with memory disorders. The toolkit also supports practice-based research. We describe the design and successful implementation of a customized EMR toolkit to support Best Practices in the care of patients with memory disorders. We discuss applications, including quality improvement projects and current research initiatives, using the toolkit. This toolkit is being shared with other departments of Neurology as part of the Neurology Practice-Based Research Network. Data collection is ongoing, including longitudinal follow-up. This toolkit will generate data that will allow for descriptive and hypothesis driven research as well-quality improvement among patients seen in a memory clinic.

5.
JAMIA Open ; 1(1): 99-106, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30386852

RESUMO

OBJECTIVES: To demonstrate the feasibility of pragmatic clinical trials comparing the effectiveness of treatments using the electronic medical record (EMR) and an adaptive assignment design. METHODS: We have designed and are implementing pragmatic trials at the point-of-care using custom-designed structured clinical documentation support and clinical decision support tools within our physician's typical EMR workflow. We are applying a subgroup based adaptive design (SUBA) that enriches treatment assignments based on baseline characteristics and prior outcomes. SUBA uses information from a randomization phase (phase 1, equal randomization, 120 patients), to adaptively assign treatments to the remaining participants (at least 300 additional patients total) based on a Bayesian hierarchical model. Enrollment in phase 1 is underway in our neurology clinical practices for 2 separate trials using this method, for migraine and mild cognitive impairment (MCI). RESULTS: We are successfully collecting structured data, in the context of the providers' clinical workflow, necessary to conduct our trials. We are currently enrolling patients in 2 point-of-care trials of non-inferior treatments. As of March 1, 2018, we have enrolled 36% of eligible patients into our migraine study and 63% of eligible patients into our MCI study. Enrollment is ongoing and validation of outcomes has begun. DISCUSSION: This proof of concept article demonstrates the feasibility of conducting pragmatic trials using the EMR and an adaptive design. CONCLUSION: The demonstration of successful pragmatic clinical trials based on a customized EMR and adaptive design is an important next step in achieving personalized medicine and provides a framework for future studies of comparative effectiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA