Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Cell ; 70(5): 814-824.e6, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29883605

RESUMO

To achieve adaptive and heritable immunity against viruses and other mobile genetic elements, CRISPR-Cas systems must capture and store short DNA fragments (spacers) from these foreign elements into host genomic CRISPR arrays. This process is catalyzed by conserved Cas1/Cas2 integration complexes, but the specific roles of another highly conserved protein linked to spacer acquisition, the Cas4 nuclease, are just now emerging. Here, we show that two Cas4 nucleases (Cas4-1 and Cas4-2) play critical roles in CRISPR spacer acquisition in Pyrococcus furiosus. The nuclease activities of both Cas4 proteins are required to process protospacers to the correct size. Cas4-1 specifies the upstream PAM (protospacer adjacent motif), while Cas4-2 specifies the conserved downstream motif. Both Cas4 proteins ensure CRISPR spacer integration in a defined orientation leading to CRISPR immunity. Collectively, these findings provide in vivo evidence for critical roles of Cas4 nucleases in protospacer generation and functional spacer integration at CRISPR arrays.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano/genética , DNA Intergênico/genética , Edição de Genes , Motivos de Nucleotídeos , Pyrococcus furiosus/genética , Imunidade Adaptativa , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , DNA Bacteriano/química , DNA Bacteriano/imunologia , DNA Bacteriano/metabolismo , DNA Intergênico/química , DNA Intergênico/metabolismo , Regulação Bacteriana da Expressão Gênica , Conformação de Ácido Nucleico , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/imunologia
2.
RNA ; 28(8): 1074-1088, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618430

RESUMO

CRISPR-Cas systems are functionally diverse prokaryotic antiviral defense systems, which encompass six distinct types (I-VI) that each encode different effector Cas nucleases with distinct nucleic acid cleavage specificities. By harnessing the unique attributes of the various CRISPR-Cas systems, a range of innovative CRISPR-based DNA and RNA targeting tools and technologies have been developed. Here, we exploit the ability of type III-A CRISPR-Cas systems to carry out RNA-guided and sequence-specific target RNA cleavage for establishment of research tools for post-transcriptional control of gene expression. Type III-A systems from three bacterial species (L. lactis, S. epidermidis, and S. thermophilus) were each expressed on a single plasmid in E. coli, and the efficiency and specificity of gene knockdown was assessed by northern blot and transcriptomic analysis. We show that engineered type III-A modules can be programmed using tailored CRISPR RNAs to efficiently knock down gene expression of both coding and noncoding RNAs in vivo. Moreover, simultaneous degradation of multiple cellular mRNA transcripts can be directed by utilizing a CRISPR array expressing corresponding gene-targeting crRNAs. Our results demonstrate the utility of distinct type III-A modules to serve as specific and effective gene knockdown platforms in heterologous cells. This transcriptome engineering technology has the potential to be further refined and exploited for key applications including gene discovery and gene pathway analyses in additional prokaryotic and perhaps eukaryotic cells and organisms.


Assuntos
Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Técnicas de Silenciamento de Genes , RNA/genética , Staphylococcus epidermidis , Tecnologia
3.
Nucleic Acids Res ; 50(3): 1562-1582, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34893878

RESUMO

Type III CRISPR-Cas systems have a unique mode of interference, involving crRNA-guided recognition of nascent RNA and leading to DNA and RNA degradation. How type III systems acquire new CRISPR spacers is currently not well understood. Here, we characterize CRISPR spacer uptake by a type III-A system within its native host, Streptococcus thermophilus. Adaptation by the type II-A system in the same host provided a basis for comparison. Cas1 and Cas2 proteins were critical for type III adaptation but deletion of genes responsible for crRNA biogenesis or interference did not detectably change spacer uptake patterns, except those related to host counter-selection. Unlike the type II-A system, type III spacers are acquired in a PAM- and orientation-independent manner. Interestingly, certain regions of plasmids and the host genome were particularly well-sampled during type III-A, but not type II-A, spacer uptake. These regions included the single-stranded origins of rolling-circle replicating plasmids, rRNA and tRNA encoding gene clusters, promoter regions of expressed genes and 5' UTR regions involved in transcription attenuation. These features share the potential to form DNA secondary structures, suggesting a preferred substrate for type III adaptation. Lastly, the type III-A system adapted to and protected host cells from lytic phage infection.


Assuntos
Sistemas CRISPR-Cas , Streptococcus thermophilus/genética , Streptococcus thermophilus/virologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Plasmídeos , Streptococcus thermophilus/metabolismo
4.
J Bacteriol ; 205(6): e0048222, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37255445

RESUMO

Prokaryotes are under constant pressure from phage infection and thus have evolved multiple means of defense or evasion. While CRISPR-Cas constitutes a robust immune system and appears to be the predominant means of survival for Streptococcus thermophilus when facing lytic phage infection, other forms of phage resistance coexist in this species. Here, we show that S. thermophilus strains with deleted CRISPR-Cas loci can still give rise to phage-resistant clones following lytic phage challenge. Notably, non-CRISPR phage-resistant survivors had multiple mutations which would truncate or recode a membrane-anchored host protease, FtsH. Phage adsorption was dramatically reduced in FtsH mutants, implicating this protein in phage attachment. Phages were isolated which could bypass FtsH-based resistance through mutations predicted to alter tape measure protein translation. Together, these results identify key components in phage propagation that are subject to mutation in the molecular arms race between phage and host cell. IMPORTANCE Streptococcus thermophilus is an important organism for production of cultured dairy foods, but it is susceptible to lytic phages which can lead to failed products. Consequently, mechanisms for phage resistance are an active area of research. One such mechanism is CRISPR-Cas, and S. thermophilus is a model organism for the study of this form of adaptive immunity. Here, we expand on known mechanisms with our finding that spontaneous mutations in ftsH, a gene encoding a membrane-anchored protease, protected against phage infection by disrupting phage adsorption. In turn, mutations in phage tail protein genes allowed phages to overcome ftsH-based resistance. Our results identified components in phage propagation that are subject to mutation in the molecular arms race between phage and host.


Assuntos
Bacteriófagos , Fagos de Streptococcus , Bacteriófagos/genética , Streptococcus thermophilus/genética , Adsorção , Mutação , Peptídeo Hidrolases/genética , Sistemas CRISPR-Cas , Fagos de Streptococcus/genética
5.
Extremophiles ; 26(3): 36, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385310

RESUMO

Pyrococcus furiosus is a hyperthermophilic archaeon with three effector CRISPR complexes (types I-A, I-B, and III-B) that each employ crRNAs derived from seven CRISPR arrays. Here, we investigate the CRISPR adaptation response to a newly discovered and self-transmissible plasmid, pT33.3. Transconjugant strains of Pyrococcus furiosus exhibited dramatically elevated levels of new spacer integration at CRISPR loci relative to the strain harboring a commonly employed, laboratory-constructed plasmid. High-throughput sequence analysis demonstrated that the vast majority of the newly acquired spacers were preferentially selected from DNA surrounding a particular region of the pT33.3 plasmid and exhibited a bi-directional pattern of strand bias that is a hallmark of primed adaptation by type I systems. We observed that one of the CRISPR arrays of our Pyrococcus furiosus laboratory strain encodes a spacer that closely matches the region of the conjugative plasmid that is targeted for adaptation. The hyper-adaptation phenotype was found to strictly depend both on the presence of this single matching spacer as well as the I-B effector complex, known to mediate primed adaptation. Our results indicate that Pyrococcus furiosus naturally encountered this conjugative plasmid or a related mobile genetic element in the past and responds to reinfection with robust primed adaptation.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pyrococcus furiosus , Pyrococcus furiosus/genética , Sistemas CRISPR-Cas , Plasmídeos/genética , DNA/genética
6.
Nucleic Acids Res ; 48(11): 6120-6135, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32421777

RESUMO

CRISPR-Cas adaptive immune systems are used by prokaryotes to defend against invaders like viruses and other mobile genetic elements. Immune memories are stored in the form of 'spacers' which are short DNA sequences that are captured from invaders and added to the CRISPR array during a process called 'adaptation'. Spacers are transcribed and the resulting CRISPR (cr)RNAs assemble with different Cas proteins to form effector complexes that recognize matching nucleic acid and destroy it ('interference'). Adaptation can be 'naïve', i.e. independent of any existing spacer matches, or it can be 'primed', i.e. spurred by the crRNA-mediated detection of a complete or partial match to an invader sequence. Here we show that primed adaptation occurs in Pyrococcus furiosus. Although P. furiosus has three distinct CRISPR-Cas interference systems (I-B, I-A and III-B), only the I-B system and Cas3 were necessary for priming. Cas4, which is important for selection and processing of new spacers in naïve adaptation, was also essential for priming. Loss of either the I-B effector proteins or Cas3 reduced naïve adaptation. However, when Cas3 and all crRNP genes were deleted, uptake of correctly processed spacers was observed, indicating that none of these interference proteins are necessary for naïve adaptation.


Assuntos
Adaptação Fisiológica/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , DNA/metabolismo , Pyrococcus furiosus/genética , Pyrococcus furiosus/imunologia , Pareamento de Bases , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , DNA Helicases/metabolismo , Mutação , Hibridização de Ácido Nucleico , Plasmídeos/genética , Plasmídeos/metabolismo , Pyrococcus furiosus/metabolismo , RNA/genética , RNA/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/imunologia , Ribonucleoproteínas/metabolismo
7.
Nature ; 521(7552): 376-9, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25970244

RESUMO

Recursive splicing is a process in which large introns are removed in multiple steps by re-splicing at ratchet points--5' splice sites recreated after splicing. Recursive splicing was first identified in the Drosophila Ultrabithorax (Ubx) gene and only three additional Drosophila genes have since been experimentally shown to undergo recursive splicing. Here we identify 197 zero nucleotide exon ratchet points in 130 introns of 115 Drosophila genes from total RNA sequencing data generated from developmental time points, dissected tissues and cultured cells. The sequential nature of recursive splicing was confirmed by identification of lariat introns generated by splicing to and from the ratchet points. We also show that recursive splicing is a constitutive process, that depletion of U2AF inhibits recursive splicing, and that the sequence and function of ratchet points are evolutionarily conserved in Drosophila. Finally, we identify four recursively spliced human genes, one of which is also recursively spliced in Drosophila. Together, these results indicate that recursive splicing is commonly used in Drosophila, occurs in humans, and provides insight into the mechanisms by which some large introns are removed.


Assuntos
Drosophila melanogaster/genética , Genoma de Inseto/genética , Nucleotídeos/genética , Splicing de RNA/genética , Animais , Sequência de Bases , Células Cultivadas , Éxons/genética , Feminino , Genes de Insetos/genética , Humanos , Íntrons/genética , Masculino , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Sítios de Splice de RNA/genética , Reprodutibilidade dos Testes , Ribonucleoproteínas/deficiência , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Fator de Processamento U2AF
8.
Nucleic Acids Res ; 47(14): 7518-7531, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31219587

RESUMO

Acquiring foreign spacer DNA into the CRISPR locus is an essential primary step of the CRISPR-Cas pathway in prokaryotes for developing host immunity to mobile genetic elements. Here, we investigate spacer integration in vitro using proteins from Pyrococcus furiosus and demonstrate that Cas1 and Cas2 are sufficient to accurately integrate spacers into a minimal CRISPR locus. Using high-throughput sequencing, we identified high frequency spacer integration occurring at the same CRISPR repeat border sites utilized in vivo, as well as at several non-CRISPR plasmid sequences which share features with repeats. Analysis of non-CRISPR integration sites revealed that Cas1 and Cas2 are directed to catalyze full-site spacer integration at specific DNA stretches where guanines and/or cytosines are 30 base pairs apart and the intervening sequence harbors several positionally conserved bases. Moreover, assaying a series of CRISPR repeat mutations, followed by sequencing of the integration products, revealed that the specificity of integration is primarily directed by sequences at the leader-repeat junction as well as an adenine-rich sequence block in the mid-repeat. Together, our results indicate that P. furiosus Cas1 and Cas2 recognize multiple sequence features distributed over a 30 base pair DNA region for accurate spacer integration at the CRISPR repeat.


Assuntos
Proteínas Arqueais/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Pyrococcus furiosus/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , Endonucleases/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Plasmídeos/genética , Pyrococcus furiosus/metabolismo
9.
Nucleic Acids Res ; 47(16): 8632-8648, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31392984

RESUMO

CRISPR-Cas systems provide heritable immunity against viruses by capturing short invader DNA sequences, termed spacers, and incorporating them into the CRISPR loci of the prokaryotic host genome. Here, we investigate DNA elements that control accurate spacer uptake in the type II-A CRISPR locus of Streptococcus thermophilus. We determined that purified Cas1 and Cas2 proteins catalyze spacer integration with high specificity for CRISPR repeat junctions. We show that 10 bp of the CRISPR leader sequence is critical for stimulating polarized integration preferentially at the repeat proximal to the leader. Spacer integration proceeds through a two-step transesterification reaction where the 3' hydroxyl groups of the spacer target both repeat borders on opposite strands. The leader-proximal end of the repeat is preferentially targeted for the first site of integration through recognition of sequences spanning the leader-repeat junction. Subsequently, second-site integration at the leader-distal end of the repeat is specified by multiple determinants including a length-defining mechanism relying on a repeat element proximal to the second site of integration. Our results highlight the intrinsic ability of type II Cas1/Cas2 proteins to coordinate directional and site-specific spacer integration into the CRISPR locus to ensure precise duplication of the repeat required for CRISPR immunity.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes , Genoma Bacteriano , Streptococcus thermophilus/genética , Sequência de Bases , Endonucleases/imunologia , Endonucleases/metabolismo , Esterificação , Loci Gênicos , Isoenzimas/genética , Isoenzimas/imunologia , Isoenzimas/metabolismo , Mutagênese Insercional , Plasmídeos/química , Plasmídeos/metabolismo , Streptococcus thermophilus/imunologia , Streptococcus thermophilus/metabolismo , Streptococcus thermophilus/virologia , Vírus/genética , Vírus/metabolismo
10.
Nucleic Acids Res ; 45(19): 11281-11294, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29036456

RESUMO

To acquire CRISPR-Cas immunity against invasive mobile genetic elements, prokaryotes must first integrate fragments of foreign DNA into their genomic CRISPR arrays for use in future invader silencing. Here, we found that the hyperthermophilic archaeaon, Pyrococcus furiosus, actively incorporates DNA fragments (spacers) from both plasmid (foreign) and host genome (self) sequences into its seven CRISPR loci. The majority of new spacers were derived from DNA immediately downstream from a 5'-CCN-3' protospacer adjacent motif (PAM) that is critical for invader targeting. Interestingly, spacers were preferentially acquired from genome or plasmid regions corresponding to active transposons, CRISPR loci, ribosomal RNA genes, rolling circle origins of replication, and areas where plasmids recombined with the host chromosome. A common feature of the highly sampled spacers is that they arise from DNA regions expected to undergo DNA nicking and/or double-strand breaks. Taken together with recent results from bacterial systems, our findings indicate that free DNA termini and PAMs are conserved features important for CRISPR spacer uptake in diverse prokaryotes and CRISPR-Cas systems. Moreover, lethal self-targeting by CRISPR systems may contribute to host genome stability by eliminating cells undergoing active transposon mobility or chromosomal uptake of autonomously replicating foreign mobile genetic elements.


Assuntos
Sistemas CRISPR-Cas , DNA/genética , Motivos de Nucleotídeos/genética , Pyrococcus furiosus/genética , Cromossomos de Archaea/genética , DNA/metabolismo , Genoma Arqueal/genética , Instabilidade Genômica , Modelos Genéticos , Plasmídeos/genética
11.
Physiology (Bethesda) ; 27(6): 362-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23223630

RESUMO

A-to-I RNA editing can recode mRNAs, giving organisms the option to express diverse, functionally distinct protein isoforms. Here, we propose that RNA editing is inherently geared for temperature adaptation because it tends to recode to smaller, less stabilizing amino acids. Studies on how editing affects protein function support this idea.


Assuntos
Adaptação Biológica/genética , Edição de RNA , RNA Mensageiro/genética , Animais , Humanos , Isoformas de Proteínas , Temperatura
12.
Nat Microbiol ; 8(9): 1682-1694, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550505

RESUMO

CRISPR-Cas systems provide heritable immunity against viruses and other mobile genetic elements by incorporating fragments of invader DNA into the host CRISPR array as spacers. Integration of new spacers is localized to the 5' end of the array, and in certain Gram-negative Bacteria this polarized localization is accomplished by the integration host factor. For most other Bacteria and Archaea, the mechanism for 5' end localization is unknown. Here we show that archaeal histones play a key role in directing integration of CRISPR spacers. In Pyrococcus furiosus, deletion of either histone A or B impairs integration. In vitro, purified histones are sufficient to direct integration to the 5' end of the CRISPR array. Archaeal histone tetramers and bacterial integration host factor induce similar U-turn bends in bound DNA. These findings indicate a co-evolution of CRISPR arrays with chromosomal DNA binding proteins and a widespread role for binding and bending of DNA to facilitate accurate spacer integration.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Histonas , Histonas/genética , Archaea/genética , Fatores Hospedeiros de Integração , DNA , Bactérias
13.
Front Microbiol ; 12: 664299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868219

RESUMO

CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated genes) is a type of prokaryotic immune system that is unique in its ability to provide sequence-specific adaptive protection, which can be updated in response to new threats. CRISPR-Cas does this by storing fragments of DNA from invading genetic elements in an array interspersed with short repeats. The CRISPR array can be continuously updated through integration of new DNA fragments (termed spacers) at one end, but over time existing spacers become obsolete. To optimize immunity, spacer uptake, residency, and loss must be regulated. This mini-review summarizes what is known about how spacers are organized, maintained, and lost from CRISPR arrays.

14.
Microbiol Resour Announc ; 9(10)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139573

RESUMO

We report here the complete genome sequence of Streptococcus ratti strain JH145. Streptococcus ratti is a cariogenic species of mutans streptococcus that has been isolated from rat and human teeth. The strain JH145, derived from strain BHT-2, is interesting for oral health because it does not produce cariogenic lactic acid but shows robust biofilm production.

15.
Genome Announc ; 6(6)2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29439051

RESUMO

We report here the complete genome sequence of Streptococcus thermophilus DGCC 7710. S. thermophilus is widely used in industrial dairy production.

16.
Elife ; 42015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25569156

RESUMO

RNA editing by adenosine deamination alters genetic information from the genomic blueprint. When it recodes mRNAs, it gives organisms the option to express diverse, functionally distinct, protein isoforms. All eumetazoans, from cnidarians to humans, express RNA editing enzymes. However, transcriptome-wide screens have only uncovered about 25 transcripts harboring conserved recoding RNA editing sites in mammals and several hundred recoding sites in Drosophila. These studies on few established models have led to the general assumption that recoding by RNA editing is extremely rare. Here we employ a novel bioinformatic approach with extensive validation to show that the squid Doryteuthis pealeii recodes proteins by RNA editing to an unprecedented extent. We identify 57,108 recoding sites in the nervous system, affecting the majority of the proteins studied. Recoding is tissue-dependent, and enriched in genes with neuronal and cytoskeletal functions, suggesting it plays an important role in brain physiology.


Assuntos
Adenosina/metabolismo , Decapodiformes/genética , Inosina/metabolismo , Sistema Nervoso/metabolismo , Edição de RNA/genética , Aminoácidos/metabolismo , Animais , Sequência de Bases , Genoma , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
Science ; 335(6070): 848-51, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22223739

RESUMO

To operate in the extreme cold, ion channels from psychrophiles must have evolved structural changes to compensate for their thermal environment. A reasonable assumption would be that the underlying adaptations lie within the encoding genes. Here, we show that delayed rectifier K(+) channel genes from an Antarctic and a tropical octopus encode channels that differ at only four positions and display very similar behavior when expressed in Xenopus oocytes. However, the transcribed messenger RNAs are extensively edited, creating functional diversity. One editing site, which recodes an isoleucine to a valine in the channel's pore, greatly accelerates gating kinetics by destabilizing the open state. This site is extensively edited in both Antarctic and Arctic species, but mostly unedited in tropical species. Thus adenosine-to-inosine RNA editing can respond to the physical environment.


Assuntos
Aclimatação/genética , Octopodiformes/fisiologia , Edição de RNA , Superfamília Shaker de Canais de Potássio/fisiologia , Adenosina/metabolismo , Animais , Regiões Antárticas , Inosina/metabolismo , Dados de Sequência Molecular , Octopodiformes/genética , Proteínas Recombinantes , Superfamília Shaker de Canais de Potássio/genética , Especificidade da Espécie , Xenopus laevis
18.
Behav Inf Technol ; 21(5): 359-64, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14552357

RESUMO

Human collaboration in distributed knowledge sharing groups depends on the functionality of information and communication technologies (ICT) to support performance. Since many of these dynamic environments are constrained by time limits, knowledge must be shared efficiently by adapting the level of information detail to the specific situation. This paper focuses on the process of knowledge and context sharing with and without mediation by ICT, as well as issues to be resolved when determining appropriate ICT channels. Both technology-rich and non-technology examples are discussed.


Assuntos
Comunicação , Comportamento Cooperativo , Gestão da Informação , Ciência da Informação/métodos , Modelos Organizacionais , Ergonomia , Processos Grupais , Humanos , Serviços de Informação , Teoria da Informação , Conhecimento , Modelos Estatísticos , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA