Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125878

RESUMO

Copper is a trace element whose electronic configuration provides it with essential structural and catalytic functions. However, in excess, both its high protein affinity and redox-catalyzing properties can lead to hazardous consequences. In addition to promoting oxidative stress, copper is gaining interest for its effects on neurotransmission through modulation of GABAergic and glutamatergic receptors and interaction with the dopamine reuptake transporter. The aim of the present study was to investigate the effects of copper overexposure on the levels of dopamine, noradrenaline, and serotonin, or their main metabolites in rat's striatum extracellular fluid. Copper was injected intraperitoneally using our previously developed model, which ensured striatal overconcentration (2 mg CuCl2/kg for 30 days). Subsequently, extracellular fluid was collected by microdialysis on days 0, 15, and 30. Dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and noradrenaline (NA) levels were then determined by HPLC coupled with electrochemical detection. We observed a significant increase in the basal levels of DA and HVA after 15 days of treatment (310% and 351%), which was maintained after 30 days (358% and 402%), with no significant changes in the concentrations of 5-HIAA, DOPAC, and NA. Copper overload led to a marked increase in synaptic DA concentration, which could contribute to the psychoneurological alterations and the increased oxidative toxicity observed in Wilson's disease and other copper dysregulation states.


Assuntos
Cobre , Corpo Estriado , Dopamina , Líquido Extracelular , Ácido Homovanílico , Animais , Dopamina/metabolismo , Cobre/metabolismo , Ácido Homovanílico/metabolismo , Ratos , Masculino , Líquido Extracelular/metabolismo , Corpo Estriado/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ratos Wistar , Serotonina/metabolismo , Norepinefrina/metabolismo
2.
Stem Cell Res Ther ; 15(1): 138, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735991

RESUMO

BACKGROUND: Clinical trials have provided evidence that transplants of dopaminergic precursors, which may be replaced by new in vitro stem cell sources, can integrate into the host tissue, and alleviate motor symptoms in Parkinson´s disease (PD). In some patients, deterioration of graft function occurred several months after observing a graft-derived functional improvement. Rejection of peripheral organs was initially related to HLA-specific antibodies. However, the role of non-HLA antibodies is now considered also relevant for rejection. Angiotensin-II type-1 receptor autoantibodies (AT1-AA) act as agonists of the AT1 receptors. AT1-AA are the non-HLA antibodies most widely associated with graft dysfunction or rejection after transplantation of different solid organs and hematopoietic stem cells. However, it is not known about the presence and possible functional effects of AT1-AA in dopaminergic grafts, and the effects of treatment with AT1 receptor blockers (ARBs) such as candesartan on graft survival. METHODS: In a 6-hydroxydopamine PD rat model, we studied the short-term (10 days)- and long-term (3 months) effects of chronic treatment with the ARB candesartan on survival of grafted dopaminergic neurons and microglial graft infiltration, as well as the effects of dopaminergic denervation and grafting on serum and CSF AT1-AA levels. The expression of AT1 receptors in grafted neurons was determined by laser capture microdissection. RESULTS: At the early period post-grafting, the number of grafted dopaminergic neurons that survived was not significantly different between treated and untreated hosts (i.e., control rats and rats treated with candesartan), probably because, just after grafting, other deleterious factors are predominant for dopaminergic cell death, such as mechanical trauma, lack of growth factors/nutrients and ischemia. However, several months post-grafting, we observed a significantly higher number of surviving dopaminergic neurons and a higher density of striatal dopaminergic terminals in the candesartan-treated group. For several months, grafted rats showed blood and cerebrospinal fluid levels of AT1-AA higher than normal controls, and also higher AT1-AA levels than non-grafted parkinsonian rats. CONCLUSIONS: The results suggest the use of ARBs such as candesartan in PD patients, particularly before and after dopaminergic grafts, and the need to monitor AT1-AA levels in PD patients, particularly in those candidates for dopaminergic grafting.


Assuntos
Autoanticorpos , Neurônios Dopaminérgicos , Doença de Parkinson , Receptor Tipo 1 de Angiotensina , Animais , Ratos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Autoanticorpos/imunologia , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/imunologia , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA