Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(4): 973-983.e14, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388454

RESUMO

Roots of healthy plants are inhabited by soil-derived bacteria, fungi, and oomycetes that have evolved independently in distinct kingdoms of life. How these microorganisms interact and to what extent those interactions affect plant health are poorly understood. We examined root-associated microbial communities from three Arabidopsis thaliana populations and detected mostly negative correlations between bacteria and filamentous microbial eukaryotes. We established microbial culture collections for reconstitution experiments using germ-free A. thaliana. In plants inoculated with mono- or multi-kingdom synthetic microbial consortia, we observed a profound impact of the bacterial root microbiota on fungal and oomycetal community structure and diversity. We demonstrate that the bacterial microbiota is essential for plant survival and protection against root-derived filamentous eukaryotes. Deconvolution of 2,862 binary bacterial-fungal interactions ex situ, combined with community perturbation experiments in planta, indicate that biocontrol activity of bacterial root commensals is a redundant trait that maintains microbial interkingdom balance for plant health.


Assuntos
Arabidopsis/microbiologia , Consórcios Microbianos , Raízes de Plantas/microbiologia , Arabidopsis/fisiologia , Bactérias/patogenicidade , Fungos/patogenicidade , Simbiose
2.
Proc Natl Acad Sci U S A ; 120(15): e2221508120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018204

RESUMO

Soil-dwelling microbes are the principal inoculum for the root microbiota, but our understanding of microbe-microbe interactions in microbiota establishment remains fragmentary. We tested 39,204 binary interbacterial interactions for inhibitory activities in vitro, allowing us to identify taxonomic signatures in bacterial inhibition profiles. Using genetic and metabolomic approaches, we identified the antimicrobial 2,4-diacetylphloroglucinol (DAPG) and the iron chelator pyoverdine as exometabolites whose combined functions explain most of the inhibitory activity of the strongly antagonistic Pseudomonas brassicacearum R401. Microbiota reconstitution with a core of Arabidopsis thaliana root commensals in the presence of wild-type or mutant strains revealed a root niche-specific cofunction of these exometabolites as root competence determinants and drivers of predictable changes in the root-associated community. In natural environments, both the corresponding biosynthetic operons are enriched in roots, a pattern likely linked to their role as iron sinks, indicating that these cofunctioning exometabolites are adaptive traits contributing to pseudomonad pervasiveness throughout the root microbiota.


Assuntos
Arabidopsis , Microbiota , Bactérias/genética , Microbiota/genética , Simbiose , Arabidopsis/genética , Interações Microbianas , Raízes de Plantas/genética , Microbiologia do Solo
3.
New Phytol ; 241(1): 329-342, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37771245

RESUMO

Endoplasmic reticulum (ER) bodies are ER-derived structures that contain a large amount of PYK10 myrosinase, which hydrolyzes tryptophan (Trp)-derived indole glucosinolates (IGs). Given the well-described role of IGs in root-microbe interactions, we hypothesized that ER bodies in roots are important for interaction with soil-borne microbes at the root-soil interface. We used mutants impaired in ER bodies (nai1), ER body-resident myrosinases (pyk10bglu21), IG biosynthesis (myb34/51/122), and Trp specialized metabolism (cyp79b2b3) to profile their root microbiota community in natural soil, evaluate the impact of axenically collected root exudates on soil or synthetic microbial communities, and test their response to fungal endophytes in a mono-association setup. Tested mutants exhibited altered bacterial and fungal communities in rhizoplane and endosphere, respectively. Natural soils and bacterial synthetic communities treated with mutant root exudates exhibited distinctive microbial profiles from those treated with wild-type (WT) exudates. Most tested endophytes severely restricted the growth of cyp79b2b3, a part of which also impaired the growth of pyk10bglu21. Our results suggest that root ER bodies and their resident myrosinases modulate the profile of root-secreted metabolites and thereby influence root-microbiota interactions.


Assuntos
Microbiota , Triptofano , Glicosídeo Hidrolases , Bactérias , Solo/química , Microbiologia do Solo , Raízes de Plantas/microbiologia , Rizosfera
4.
Plant Cell ; 33(6): 1863-1887, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33751107

RESUMO

Plants recognize surrounding microbes by sensing microbe-associated molecular patterns (MAMPs) to activate pattern-triggered immunity (PTI). Despite their significance for microbial control, the evolution of PTI responses remains largely uncharacterized. Here, by employing comparative transcriptomics of six Arabidopsis thaliana accessions and three additional Brassicaceae species to investigate PTI responses, we identified a set of genes that commonly respond to the MAMP flg22 and genes that exhibit species-specific expression signatures. Variation in flg22-triggered transcriptome responses across Brassicaceae species was incongruent with their phylogeny, while expression changes were strongly conserved within A. thaliana. We found the enrichment of WRKY transcription factor binding sites in the 5'-regulatory regions of conserved and species-specific responsive genes, linking the emergence of WRKY-binding sites with the evolution of gene expression patterns during PTI. Our findings advance our understanding of the evolution of the transcriptome during biotic stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brassicaceae , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Imunidade Vegetal/genética
5.
EMBO Rep ; 23(12): e55380, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36219690

RESUMO

Interactions between plants and neighboring microbial species are fundamental elements that collectively determine the structure and function of the plant microbiota. However, the molecular basis of such interactions is poorly characterized. Here, we colonize Arabidopsis leaves with nine plant-associated bacteria from all major phyla of the plant microbiota and profile cotranscriptomes of plants and bacteria six hours after inoculation. We detect both common and distinct cotranscriptome signatures among plant-commensal pairs. In planta responses of commensals are similar to those of a disarmed pathogen characterized by the suppression of genes involved in general metabolism in contrast to a virulent pathogen. We identify genes that are enriched in the genome of plant-associated bacteria and induced in planta, which may be instrumental for bacterial adaptation to the host environment and niche separation. This study provides insights into how plants discriminate among bacterial strains and lays the foundation for in-depth mechanistic dissection of plant-microbiota interactions.

6.
Proc Natl Acad Sci U S A ; 116(6): 2364-2373, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674663

RESUMO

In nature, plants must respond to multiple stresses simultaneously, which likely demands cross-talk between stress-response pathways to minimize fitness costs. Here we provide genetic evidence that biotic and abiotic stress responses are differentially prioritized in Arabidopsis thaliana leaves of different ages to maintain growth and reproduction under combined biotic and abiotic stresses. Abiotic stresses, such as high salinity and drought, blunted immune responses in older rosette leaves through the phytohormone abscisic acid signaling, whereas this antagonistic effect was blocked in younger rosette leaves by PBS3, a signaling component of the defense phytohormone salicylic acid. Plants lacking PBS3 exhibited enhanced abiotic stress tolerance at the cost of decreased fitness under combined biotic and abiotic stresses. Together with this role, PBS3 is also indispensable for the establishment of salt stress- and leaf age-dependent phyllosphere bacterial communities. Collectively, our work reveals a mechanism that balances trade-offs upon conflicting stresses at the organism level and identifies a genetic intersection among plant immunity, leaf microbiota, and abiotic stress tolerance.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Desenvolvimento Vegetal/imunologia , Imunidade Vegetal , Plantas/genética , Plantas/imunologia , Reprodução , Fatores de Transcrição/metabolismo
7.
Environ Microbiol ; 23(10): 6292-6308, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34519166

RESUMO

Powdery mildew is a foliar disease caused by epiphytically growing obligate biotrophic ascomycete fungi. How powdery mildew colonization affects host resident microbial communities locally and systemically remains poorly explored. We performed powdery mildew (Golovinomyces orontii) infection experiments with Arabidopsis thaliana grown in either natural soil or a gnotobiotic system and studied the influence of pathogen invasion into standing natural multi-kingdom or synthetic bacterial communities (SynComs). We found that after infection of soil-grown plants, G. orontii outcompeted numerous resident leaf-associated fungi while fungal community structure in roots remained unaltered. We further detected a significant shift in foliar but not root-associated bacterial communities in this setup. Pre-colonization of germ-free A. thaliana leaves with a bacterial leaf-derived SynCom, followed by G. orontii invasion, induced an overall similar shift in the foliar bacterial microbiota and minor changes in the root-associated bacterial assemblage. However, a standing root-derived SynCom in root samples remained robust against foliar infection with G. orontii. Although pathogen growth was unaffected by the leaf SynCom, fungal infection caused a twofold increase in leaf bacterial load. Our findings indicate that G. orontii infection affects mainly microbial communities in local plant tissue, possibly driven by pathogen-induced changes in source-sink relationships and host immune status.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Arabidopsis/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta
8.
Nature ; 528(7582): 364-9, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26633631

RESUMO

Roots and leaves of healthy plants host taxonomically structured bacterial assemblies, and members of these communities contribute to plant growth and health. We established Arabidopsis leaf- and root-derived microbiota culture collections representing the majority of bacterial species that are reproducibly detectable by culture-independent community sequencing. We found an extensive taxonomic overlap between the leaf and root microbiota. Genome drafts of 400 isolates revealed a large overlap of genome-encoded functional capabilities between leaf- and root-derived bacteria with few significant differences at the level of individual functional categories. Using defined bacterial communities and a gnotobiotic Arabidopsis plant system we show that the isolates form assemblies resembling natural microbiota on their cognate host organs, but are also capable of ectopic leaf or root colonization. While this raises the possibility of reciprocal relocation between root and leaf microbiota members, genome information and recolonization experiments also provide evidence for microbiota specialization to their respective niche.


Assuntos
Arabidopsis/microbiologia , Microbiota/fisiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Genoma Bacteriano/genética , Vida Livre de Germes , Microbiota/genética , Análise de Sequência de DNA , Microbiologia do Solo
9.
Nat Methods ; 14(11): 1063-1071, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28967888

RESUMO

Methods for assembly, taxonomic profiling and binning are key to interpreting metagenome data, but a lack of consensus about benchmarking complicates performance assessment. The Critical Assessment of Metagenome Interpretation (CAMI) challenge has engaged the global developer community to benchmark their programs on highly complex and realistic data sets, generated from ∼700 newly sequenced microorganisms and ∼600 novel viruses and plasmids and representing common experimental setups. Assembly and genome binning programs performed well for species represented by individual genomes but were substantially affected by the presence of related strains. Taxonomic profiling and binning programs were proficient at high taxonomic ranks, with a notable performance decrease below family level. Parameter settings markedly affected performance, underscoring their importance for program reproducibility. The CAMI results highlight current challenges but also provide a roadmap for software selection to answer specific research questions.


Assuntos
Metagenômica , Software , Algoritmos , Benchmarking , Análise de Sequência de DNA
10.
Proc Natl Acad Sci U S A ; 113(49): E7996-E8005, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27864511

RESUMO

Lotus japonicus has been used for decades as a model legume to study the establishment of binary symbiotic relationships with nitrogen-fixing rhizobia that trigger root nodule organogenesis for bacterial accommodation. Using community profiling of 16S rRNA gene amplicons, we reveal that in Lotus, distinctive nodule- and root-inhabiting communities are established by parallel, rather than consecutive, selection of bacteria from the rhizosphere and root compartments. Comparative analyses of wild-type (WT) and symbiotic mutants in Nod factor receptor5 (nfr5), Nodule inception (nin) and Lotus histidine kinase1 (lhk1) genes identified a previously unsuspected role of the nodulation pathway in the establishment of different bacterial assemblages in the root and rhizosphere. We found that the loss of nitrogen-fixing symbiosis dramatically alters community structure in the latter two compartments, affecting at least 14 bacterial orders. The differential plant growth phenotypes seen between WT and the symbiotic mutants in nonsupplemented soil were retained under nitrogen-supplemented conditions that blocked the formation of functional nodules in WT, whereas the symbiosis-impaired mutants maintain an altered community structure in the nitrogen-supplemented soil. This finding provides strong evidence that the root-associated community shift in the symbiotic mutants is a direct consequence of the disabled symbiosis pathway rather than an indirect effect resulting from abolished symbiotic nitrogen fixation. Our findings imply a role of the legume host in selecting a broad taxonomic range of root-associated bacteria that, in addition to rhizobia, likely contribute to plant growth and ecological performance.


Assuntos
Lotus/microbiologia , Consórcios Microbianos , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Brassicaceae/microbiologia , Fertilizantes , Simbiose
11.
Nat Microbiol ; 9(4): 1117-1129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503974

RESUMO

DNA-amplicon-based microbiota profiling can estimate species diversity and abundance but cannot resolve genetic differences within individuals of the same species. Here we report the development of modular bacterial tags (MoBacTags) encoding DNA barcodes that enable tracking of near-isogenic bacterial commensals in an array of complex microbiome communities. Chromosomally integrated DNA barcodes are then co-amplified with endogenous marker genes of the community by integrating corresponding primer binding sites into the barcode. We use this approach to assess the contributions of individual bacterial genes to Arabidopsis thaliana root microbiota establishment with synthetic communities that include MoBacTag-labelled strains of Pseudomonas capeferrum. Results show reduced root colonization for certain mutant strains with defects in gluconic-acid-mediated host immunosuppression, which would not be detected with traditional amplicon sequencing. Our work illustrates how MoBacTags can be applied to assess scaling of individual bacterial genetic determinants in the plant microbiota.


Assuntos
Arabidopsis , Microbiota , Humanos , Bactérias/genética , Microbiota/genética , Arabidopsis/genética , Arabidopsis/microbiologia , Genes Bacterianos , Simbiose
12.
Cell Host Microbe ; 32(4): 543-556.e6, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479394

RESUMO

Plant roots are functionally heterogeneous in cellular architecture, transcriptome profile, metabolic state, and microbial immunity. We hypothesized that axial differentiation may also impact spatial colonization by root microbiota along the root axis. We developed two growth systems, ArtSoil and CD-Rhizotron, to grow and then dissect Arabidopsis thaliana roots into three segments. We demonstrate that distinct endospheric and rhizosphere bacterial communities colonize the segments, supporting the hypothesis of microbiota differentiation along the axis. Root metabolite profiling of each segment reveals differential metabolite enrichment and specificity. Bioinformatic analyses and GUS histochemistry indicate microbe-induced accumulation of SWEET2, 4, and 12 sugar uniporters. Profiling of root segments from sweet mutants shows altered spatial metabolic profiles and reorganization of endospheric root microbiota. This work reveals the interdependency between root metabolites and microbial colonization and the contribution of SWEETs to spatial diversity and stability of microbial ecosystem.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Arabidopsis/microbiologia , Bactérias/metabolismo , Rizosfera , Açúcares/metabolismo , Raízes de Plantas/microbiologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
13.
Nat Commun ; 13(1): 406, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35058457

RESUMO

Microscopic algae release organic compounds to the region immediately surrounding their cells, known as the phycosphere, constituting a niche for colonization by heterotrophic bacteria. These bacteria take up algal photoassimilates and provide beneficial functions to their host, in a process that resembles the establishment of microbial communities associated with the roots and rhizospheres of land plants. Here, we characterize the microbiota of the model alga Chlamydomonas reinhardtii and reveal extensive taxonomic and functional overlap with the root microbiota of land plants. Using synthetic communities derived from C. reinhardtii and Arabidopsis thaliana, we show that phycosphere and root bacteria assemble into taxonomically similar communities on either host. We show that provision of diffusible metabolites is not sufficient for phycosphere community establishment, which additionally requires physical proximity to the host. Our data suggest the existence of shared ecological principles driving the assembly of the A. thaliana root and C. reinhardtii phycosphere microbiota, despite the vast evolutionary distance between these two photosynthetic organisms.


Assuntos
Arabidopsis/microbiologia , Chlamydomonas/microbiologia , Microbiota , Biodiversidade , Interações Hospedeiro-Patógeno , Fotossíntese , Filogenia , Raízes de Plantas/microbiologia , Análise de Componente Principal , Microbiologia do Solo
14.
mBio ; 13(2): e0258421, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35258335

RESUMO

Plant roots are colonized by microorganisms from the surrounding soil that belong to different kingdoms and form a multikingdom microbial community called the root microbiota. Despite their importance for plant growth, the relationship between soil management, the root microbiota, and plant performance remains unknown. Here, we characterize the maize root-associated bacterial, fungal, and oomycetal communities during the vegetative and reproductive growth stages of four maize inbred lines and the pht1;6 phosphate transporter mutant. These plants were grown in two long-term experimental fields under four contrasting soil managements, including phosphate-deficient and -sufficient conditions. We showed that the maize root-associated microbiota is influenced by soil management and changes during host growth stages. We identified stable bacterial and fungal root-associated taxa that persist throughout the host life cycle. These taxa were accompanied by dynamic members that covary with changes in root metabolites. We observed an inverse stable-to-dynamic ratio between root-associated bacterial and fungal communities. We also found a host footprint on the soil biota, characterized by a convergence between soil, rhizosphere, and root bacterial communities during reproductive maize growth. Our study reveals the spatiotemporal dynamics of the maize root-associated microbiota and suggests that the fungal assemblage is less responsive to changes in root metabolites than the bacterial community. IMPORTANCE Plant roots are inhabited by microbial communities called the root microbiota, which supports plant growth and health. We show in a maize field study that the root microbiota consists of stable and dynamic members. The dynamics of the microbial community appear to be driven by changes in the metabolic state of the roots over the life cycle of maize.


Assuntos
Microbiota , Zea mays , Bactérias , Fungos/genética , Raízes de Plantas/microbiologia , Plantas , Solo , Microbiologia do Solo , Zea mays/microbiologia
15.
ISME J ; 16(3): 876-889, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34686763

RESUMO

Plant root-associated bacteria can confer protection against pathogen infection. By contrast, the beneficial effects of root endophytic fungi and their synergistic interactions with bacteria remain poorly defined. We demonstrate that the combined action of a fungal root endophyte from a widespread taxon with core bacterial microbiota members provides synergistic protection against an aggressive soil-borne pathogen in Arabidopsis thaliana and barley. We additionally reveal early inter-kingdom growth promotion benefits which are host and microbiota composition dependent. Using RNA-sequencing, we show that these beneficial activities are not associated with extensive host transcriptional reprogramming but rather with the modulation of expression of microbial effectors and carbohydrate-active enzymes.


Assuntos
Arabidopsis , Hordeum , Microbiota , Arabidopsis/microbiologia , Basidiomycota , Endófitos/genética , Raízes de Plantas/microbiologia
16.
ISME Commun ; 1(1): 73, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37938657

RESUMO

Synthetic microbial communities (SynComs) constitute an emerging and powerful tool in biological, biomedical, and biotechnological research. Despite recent advances in algorithms for the analysis of culture-independent amplicon sequencing data from microbial communities, there is a lack of tools specifically designed for analyzing SynCom data, where reference sequences for each strain are available. Here we present Rbec, a tool designed for the analysis of SynCom data that accurately corrects PCR and sequencing errors in amplicon sequences and identifies intra-strain polymorphic variation. Extensive evaluation using mock bacterial and fungal communities show that our tool outperforms current methods for samples of varying complexity, diversity, and sequencing depth. Furthermore, Rbec also allows accurate detection of contaminants in SynCom experiments.

17.
Nat Protoc ; 16(2): 988-1012, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33442053

RESUMO

Cultivating native bacteria from roots of plants grown in a given environment is essential for dissecting the functions of the root microbiota for plant growth and health with strain-specific resolution. In this study, we established a straightforward protocol for high-throughput bacterial isolation from fresh root samples using limiting dilution to ensure that most cultured bacteria originated from only one microorganism. This is followed by strain characterization using a two-sided barcode polymerase chain reaction system to identify pure and heterogeneous bacterial cultures. Our approach overcomes multiple difficulties of traditional bacterial isolation and identification methods, such as obtaining bacteria with diverse growth rates while greatly increasing throughput. To facilitate data processing, we developed an easy-to-use bioinformatic pipeline called 'Culturome' ( https://github.com/YongxinLiu/Culturome ) and a graphical user interface web server ( http://bailab.genetics.ac.cn/culturome/ ). This protocol allows any research group (two or three lab members without expertise in bioinformatics) to systematically cultivate root-associated bacteria within 8-9 weeks.


Assuntos
Bactérias/isolamento & purificação , Técnicas de Cultura de Células/métodos , Raízes de Plantas/microbiologia , Biologia Computacional/métodos , Ensaios de Triagem em Larga Escala/métodos , Microbiota/genética , Filogenia , Plantas/microbiologia
18.
Nat Plants ; 7(6): 814-825, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34031541

RESUMO

Plants grown in natural soil are colonized by phylogenetically structured communities of microbes known as the microbiota. Individual microbes can activate microbe-associated molecular pattern (MAMP)-triggered immunity (MTI), which limits pathogen proliferation but curtails plant growth, a phenomenon known as the growth-defence trade-off. Here, we report that, in monoassociations, 41% (62 out of 151) of taxonomically diverse root bacterial commensals suppress Arabidopsis thaliana root growth inhibition (RGI) triggered by immune-stimulating MAMPs or damage-associated molecular patterns. Amplicon sequencing of bacterial 16S rRNA genes reveals that immune activation alters the profile of synthetic communities (SynComs) comprising RGI-non-suppressive strains, whereas the presence of RGI-suppressive strains attenuates this effect. Root colonization by SynComs with different complexities and RGI-suppressive activities alters the expression of 174 core host genes, with functions related to root development and nutrient transport. Furthermore, RGI-suppressive SynComs specifically downregulate a subset of immune-related genes. Precolonization of plants with RGI-suppressive SynComs, or mutation of one commensal-downregulated transcription factor, MYB15, renders the plants more susceptible to opportunistic Pseudomonas pathogens. Our results suggest that RGI-non-suppressive and RGI-suppressive root commensals modulate host susceptibility to pathogens by either eliciting or dampening MTI responses, respectively. This interplay buffers the plant immune system against pathogen perturbation and defence-associated growth inhibition, ultimately leading to commensal-host homeostasis.


Assuntos
Arabidopsis/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Microbiota , Imunidade Vegetal/fisiologia , Raízes de Plantas/microbiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/imunologia , Moléculas com Motivos Associados a Patógenos , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Pseudomonas/fisiologia
19.
Nat Microbiol ; 6(9): 1150-1162, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34312531

RESUMO

Roots of different plant species are colonized by bacterial communities, that are distinct even when hosts share the same habitat. It remains unclear to what extent the host actively selects these communities and whether commensals are adapted to a specific plant species. To address this question, we assembled a sequence-indexed bacterial culture collection from roots and nodules of Lotus japonicus that contains representatives of most species previously identified using metagenomics. We analysed taxonomically paired synthetic communities from L. japonicus and Arabidopsis thaliana in a multi-species gnotobiotic system and detected signatures of host preference among commensal bacteria in a community context, but not in mono-associations. Sequential inoculation experiments revealed priority effects during root microbiota assembly, where established communities are resilient to invasion by latecomers, and that host preference of commensal bacteria confers a competitive advantage in their cognate host. Our findings show that host preference in commensal bacteria from diverse taxonomic groups is associated with their invasiveness into standing root-associated communities.


Assuntos
Arabidopsis/fisiologia , Bactérias/isolamento & purificação , Lotus/fisiologia , Microbiota , Raízes de Plantas/microbiologia , Simbiose , Arabidopsis/microbiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Lotus/microbiologia , Raízes de Plantas/fisiologia , Microbiologia do Solo
20.
mBio ; 12(3): e0084621, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34044592

RESUMO

Plant roots constitute the primary interface between plants and soilborne microorganisms and harbor microbial communities called the root microbiota. Recent studies have demonstrated a significant contribution of plant specialized metabolites (PSMs) to the assembly of root microbiota. However, the mechanistic and evolutionary details underlying the PSM-mediated microbiota assembly and its contribution to host specificity remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant specifically in the tobacco endosphere and that its enrichment in the tobacco endosphere is partially mediated by a combination of two unrelated classes of tobacco-specific PSMs, santhopine and nicotine. We isolated and sequenced Arthrobacter strains from tobacco roots as well as soils treated with these PSMs and identified genomic features, including but not limited to genes for santhopine and nicotine catabolism, that are associated with the ability to colonize tobacco roots. Phylogenomic and comparative analyses suggest that these genes were gained in multiple independent acquisition events, each of which was possibly triggered by adaptation to particular soil environments. Taken together, our findings illustrate a cooperative role of a combination of PSMs in mediating plant species-specific root bacterial microbiota assembly and suggest that the observed interaction between tobacco and Arthrobacter may be a consequence of an ecological fitting process. IMPORTANCE Host secondary metabolites have a crucial effect on the taxonomic composition of its associated microbiota. It is estimated that a single plant species produces hundreds of secondary metabolites; however, whether different classes of metabolites have distinctive or common roles in the microbiota assembly remains unclear. Here, we show that two unrelated classes of secondary metabolites in tobacco play a cooperative role in the formation of tobacco-specific compositions of the root bacterial microbiota, which has been established as a consequence of independent evolutionary events in plants and bacteria triggered by different ecological effects. Our findings illustrate mechanistic and evolutionary aspects of the microbiota assembly that are mediated by an arsenal of plant secondary metabolites.


Assuntos
Arthrobacter/genética , Arthrobacter/metabolismo , Genoma Bacteriano , Interações entre Hospedeiro e Microrganismos/genética , Nicotiana/microbiologia , Raízes de Plantas/microbiologia , Endófitos/genética , Endófitos/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Filogenia , Raízes de Plantas/metabolismo , RNA Ribossômico 16S/genética , Rizosfera , Metabolismo Secundário , Análise de Sequência de DNA , Microbiologia do Solo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA